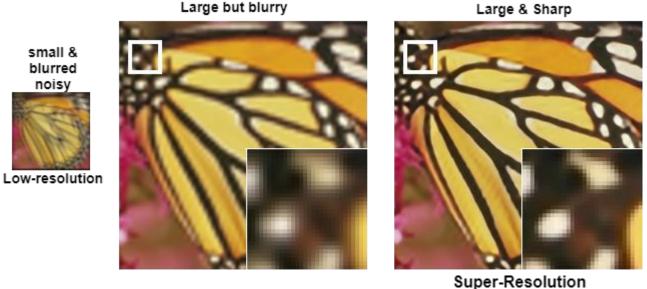


Deep Iterative Residual Convolutional Network for Single Image Super-Resolution

Rao Muhammad Umer, Gian Luca Foresti, Christian Micheloni University of Udine, Udine, Italy.

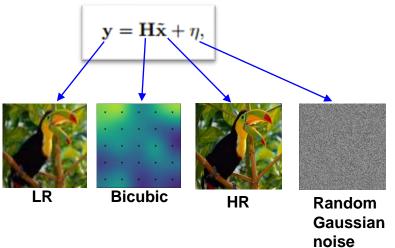
SISR: Definition

- Single Image Super-Resolution (SISR):
 - Restoration of the high-resolution (HR) image from its low-resolution (LR) counterpart.



Large & Sharp

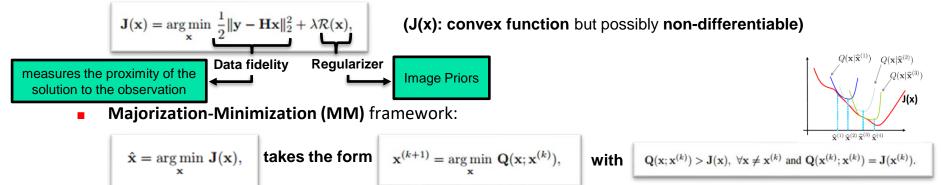
- Problem Formulation:
 - Image Forward Observation model:



- Inverse Problem:
 - There could exist **multiple** possible **HR** images resulting in the **same downscaled LR** image.
 - **Regularization** is required in order to select the most plausible ones.

Objective Function Minimization Strategy:

• Recovery of x (unknown latent HR) from y (observed LR) by the variational approach:



MM variant by majorizing the quadratic data-term:

$$\mathbf{Q}(\mathbf{x};\mathbf{x}^{(k)}) = \underset{\mathbf{x}}{\operatorname{arg\,min}} \frac{1}{2} \|\mathbf{y} - \mathbf{H}\mathbf{x}\|_{2}^{2} + \lambda \mathbf{Q}_{\mathcal{R}}(\mathbf{x};\mathbf{x}^{(k)}), \quad \text{where} \quad \mathbf{Q}_{\mathcal{R}}(\mathbf{x};\mathbf{x}_{0}) = \frac{1}{2} (\mathbf{x} - \mathbf{x}_{0})^{T} [\alpha \mathbf{I} - \mathbf{H}^{T} \mathbf{H}] (\mathbf{x} - \mathbf{x}_{0}), \\ \\ \mathbf{G} = \alpha \mathbf{I} - \mathbf{H}^{\mathsf{T}} \mathbf{H} \succ 0 : \text{ positive definite} \\ \lambda(\mathbf{G}) = \alpha - \lambda (\mathbf{H}^{\mathsf{T}} \mathbf{H}) \quad \mathbf{F} = \alpha > \|\mathbf{H}^{\mathsf{T}} \mathbf{H}\| \quad (\boldsymbol{\alpha} \approx 1)$$

- Objective Function Minimization Strategy:
 - Overall majorizer:

 $\mathbf{Q}(\mathbf{x};\mathbf{x}_0) = \frac{1}{2/\alpha} \|\mathbf{x} - \mathbf{z}\|_2^2 + \lambda \mathcal{R}(\mathbf{x}) + const.,$

where

 $\mathbf{z} = \mathbf{x}_0 + \frac{1}{\alpha} \mathbf{H}^T (\mathbf{y} - \mathbf{H} \mathbf{x}_0),$

MM optimization scheme to iteratively minimize the quadratic majorizer function Q(.) as:

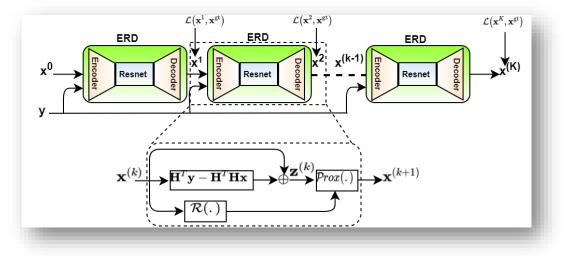
$$\hat{\mathbf{x}}^{(k)} = \underset{\mathbf{x}}{\operatorname{arg\,min}} \mathbf{Q}(\mathbf{x}; \mathbf{x}^{k})$$

$$= \underset{\mathbf{x}}{\operatorname{arg\,min}} \frac{1}{2} \|\mathbf{y} - \mathbf{H}\mathbf{x}\|_{2}^{2} + \lambda \mathbf{Q}_{\mathcal{R}}(\mathbf{x}; \mathbf{x}^{k})$$

$$= \underset{\mathbf{x}}{\operatorname{arg\,min}} \frac{1}{2/\alpha} \|\mathbf{x} - \mathbf{z}^{k}\|_{2}^{2} + \lambda \mathcal{R}(\mathbf{x})$$

$$= \operatorname{Prox}_{(\lambda/\alpha)\mathcal{R}(.)}(\mathbf{z}^{k})$$

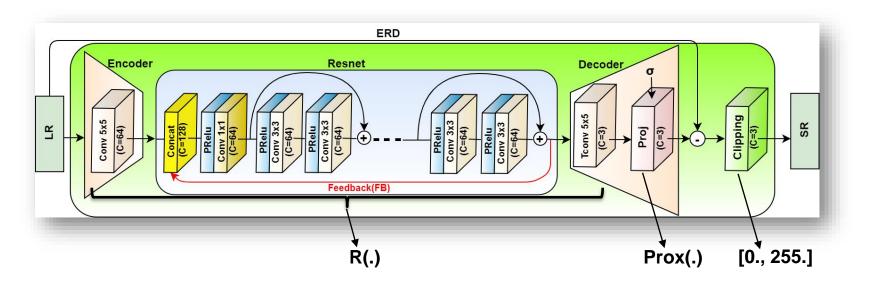
- Network Architecture:
 - A single optimizer is used for all network stages with shared structures and parameters by K steps.



Loss during training:

$$\arg\min_{\Theta} \mathcal{L}(\Theta) = \frac{1}{2} \sum_{n=1}^{N} \|\mathbf{x}_{n}^{k} - \mathbf{x}_{n}^{gt}\|_{1}$$

ERD (Encoder-Resnet-Decoder) Block:



Quantitative Results

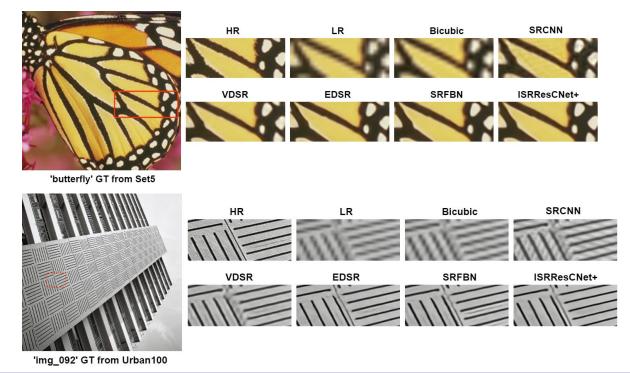
Average PSNR/SSIM values for scale factors x2, x3, and x4 with bicubic degradation model. The best performance is shown in red and the second best performance is shown in blue.

Dataset	Scale	Bicubic	SRCNN [5] (ECCV-2014)	VDSR [3] (CVPR-2016)	EDSR-baseline [4] (CVPR-2017)	RISR [7] (ICPR-2018)	SRFBN-S [9] (CVPR-2019)	ISRResCNet (Ours)	ISRResCNet+ (Ours)
Set5	×2	33.55 / 0.9304	36.16 / 0.9509	37.30 / 0.9573	37.59 / 0.9605	37.63 / 0.9590	37.39 / 0.9597	37.67 / 0.9596	37.79 / 0.9600
	×3	30.35 / 0.8686	32.28 / 0.9020	33.50 / 0.9197	34.18 / 0.9270	33.91 / 0.9234	33.99 / 0.9252	34.08 / 0.9251	34.20 / 0.9258
	×4	28.39 / 0.8109	29.99 / 0.8519	31.20 / 0.8818	31.89 / 0.8932	31.58 / 0.8870	31.76 / 0.8914	31.63 / 0.8890	31.77 / 0.8908
Set14	×2	30.05 / 0.8701	31.81 / 0.9033	32.84 / 0.9121	33.21 / 0.9177	33.16 / 0.9133	33.04 / 0.9157	32.89 / 0.9144	33.06 / 0.915
	×3	27.40 / 0.7763	28.70 / 0.8151	29.54 / 0.8323	29.91 / 0.8421	29.91 / 0.8338	29.72 / 0.8376	29.63 / 0.8365	29.76 / 0.838
	×4	25.86 / 0.7056	26.92 / 0.7427	27.75 / 0.7688	28.20 / 0.7820	28.19 / 0.7707	28.05 / 0.7785	27.99 / 0.7757	28.08 / 0.777
B100	×2	29.51 / 0.8439	31.07 / 0.8838	31.83 / 0.8949	32.03 / 0.8996	32.01 / 0.8968	31.87 / 0.8972	31.98 / 0.8974	32.03 / 0.898
	×3	27.19 / 0.7399	28.17 / 0.7799	28.80 / 0.7971	29.03 / 0.8056	28.92 / 0.7996	28.90 / 0.8015	28.91 / 0.8014	28.96 / 0.802
	×4	25.96 / 0.6698	26.70 / 0.7029	27.27 / 0.7252	27.53 / 0.7365	27.37 / 0.7270	27.41 / 0.7321	27.40 / 0.7301	27.44 / 0.731
Urban 100	×2	26.84 / 0.8409	29.01 / 0.8885	30.67 / 0.9129	31.81 / 0.9271	31.06 / 0.9168	31.27 / 0.9208	31.29 / 0.9205	31.45 / 0.922
	×3	24.44 / 0.7359	25.82 / 0.7874	27.09 / 0.8271	28.05 / 0.8524	27.41 / 0.8338	27.60 / 0.8418	27.57 / 0.8409	27.70 / 0.843
	×4	23.13 / 0.6593	24.11 / 0.7051	25.14 / 0.7522	25.98 / 0.7850	25.41 / 0.7595	25.66 / 0.7725	25.56 / 0.7682	25.65 / 0.770

Params: 1.5 M Resblocks: 16 Params: 380 K Resblocks: 5

Visual Results

SR results at the x4 scale on the test benchmark datasets:



Conclusion

- Follows the **image observation (physical) model**.
- Solves the SISR problem in an iterative manner by minimizing the discriminative loss function with residual learning.
- Exploits the powerful image **regularization** and **large-scale optimization** techniques for image restoration.
- Achieves good PSNR/SSIM with **few trainable parameters**.
- Suitable for the limited memory storage and CPU power requirements for the mobile/embedded deployment.

Thank You!