

Heterogeneous Graph-based Knowledge Transfer

for Generalized Zero-shot Learning

Junjie Wang, Xiangfeng Wang, Bo Jin, Junchi Yan, Wenjie Zhang, and Hongyuan Zha

Problem Definition

How one can correctly classify those instances from unseen classes which are absent during training?

beak feather whiskers furry

Tail

How to capture relationship?

Capture inter-class and intra-class relationship jointly by constructing a heterogeneous structured graph.

Intra-class Relationship

• Construct complete graph

Inter-class Relationship

- Compute Wasserstein barycenter $\mathcal{WB}(\lambda, \{\mathbf{b}_s\}) = \arg\min_{\mathbf{a}\in\sum_n}\sum_{s=1}^S \lambda_s \mathcal{W}_{\mathbf{C}}(\mathbf{a}, \mathbf{b}_s)$
- Select representative node

$$s_{\ell} = \arg\min_{x_i} \left\{ \mathcal{L}_C(x_{\ell}, x_i) \mid y_i = \ell \right\}$$

How to transfer knowledge?

The graph neural network is utilized to transfer knowledge rely on the heterogeneous graph.

Average neighbors' embedding vectors $h_{\mathcal{N}(v)} \leftarrow \operatorname{Mean}(\{h_u, \forall u \in \mathcal{N}(v)\}),$

Embed concatenated embedding vectors $h_v \leftarrow \delta(W \cdot \text{CONCAT}(h_v, \mu h_{\mathcal{N}(v)}) + b)$

Minimize the distance

loss :=
$$\frac{1}{|D_{tr}|} \sum_{i=1}^{|D_{tr}|} ||h(y_i) - x_i||^2 + \xi ||W||^2$$

Algorithms

Graph Construction

Training Procedure

Testing Procedure

Experiments

Datasets: SUN, CUB, AWA1, AWA2, aPY

Dataset		SUN			CUB			AWA1			AWA2			aPY		
Method	Туре	ts	tr	Η	ts	tr	Η	ts	tr	Η	ts	tr	Н	ts	tr	Н
DAP [11]	Inductive	4.2	25.1	7.2	1.7	67.9	3.3	0.0	88.7	0.0	0.0	84.7	0.0	4.8	78.3	9.0
IAP [11]	Inductive	1.0	37.8	1.8	0.2	72.8	0.4	2.1	78.2	4.1	0.9	87.6	1.8	5.7	65.6	10.4
CONSE [29]	Inductive	6.8	39.9	11.6	1.6	72.2	3.1	0.4	88.6	0.8	0.5	90.6	1.0	0.0	91.2	0.0
CMT [30]	Inductive	8.1	21.8	11.8	7.2	49.8	12.6	0.9	87.6	1.8	0.5	90.0	1.0	1.4	85.2	2.8
CMT* [30]	Inductive	8.7	28.0	13.3	4.7	60.1	8.7	8.4	86.9	15.3	8.7	89.0	15.9	10.9	74.2	19.0
SSE [12]	Inductive	2.1	36.4	4.0	8.5	46.9	14.4	7.0	80.5	12.9	8.1	82.5	14.8	0.2	78.9	0.4
LATEM [31]	Inductive	14.7	28.8	19.5	15.2	57.3	24.0	7.3	71.7	13.3	11.5	77.3	20.0	0.1	73.0	0.2
ALE [32]	Inductive	21.8	33.1	26.3	23.7	62.8	34.4	16.8	76.1	27.5	14.0	81.8	23.9	4.6	73.7	8.7
DEVISE [18]	Inductive	16.9	27.4	20.9	23.8	53.0	32.8	13.4	68.7	22.4	17.1	74.7	27.8	4.9	76.9	9.2
SJE [33]	Inductive	14.7	30.5	19.8	23.5	59.2	33.6	11.3	74.6	19.6	8.0	73.9	14.4	3.7	55.7	6.9
ESZSL [13]	Inductive	11.0	27.9	15.8	12.6	63.8	21.0	6.6	75.6	12.1	5.9	77.8	11.0	2.4	70.1	4.6
SYNC [34]	Inductive	7.9	43.4	13.4	11.5	70.9	19.8	8.9	87.3	16.2	10.0	90.5	18.0	7.4	66.3	13.3
SAE [35]	Inductive	8.8	18.0	11.8	7.8	54.0	13.6	1.8	77.1	3.5	1.1	82.2	2.2	0.4	80.9	0.9
GFZSL [36]	Inductive	0.0	39.6	0.0	0.0	45.7	0.0	1.8	80.3	3.5	2.5	80.1	4.8	0.0	83.3	0.0
DEM [15]	Inductive	20.5	34.3	25.6	19.6	57.9	29.2	32.8	84.7	47.3	30.5	86.4	45.1	11.1	75.1	19.4
PSRZSL [19]	Inductive	20.8	37.2	26.7	24.6	54.3	33.9		-	-	20.7	73.8	32.3	13.5	51.4	21.4
GAFE [21]	Inductive	19.6	31.9	24.3	22.5	52.1	31.4	25.5	76.6	38.2	26.8	78.3	40.0	15.8	68.1	25.7
HGKT (Ours)	Inductive	22.3	36.5	27.7	25.2	56.9	34.9	39.4	83.5	53.6	37.9	86.5	52.7	18.3	79.0	29.7

Experiments

T-SNE visualization of the ten unseen classes on AWA2.

Experiments

Representative images selected by Wasserstein measure and Euclidean measure on CUB dataset.

Red Feet

Shaggy Crest

Black-and-white Tail

Long Tail

Black Feet

Black Face

Red Eyes

Thank you for watching!

