

Hierarchical Classification with Confidence using Generalized Logits

Jim Davis¹, **Tong Liang¹**, James Enouen¹, Roman Ilin²

¹Ohio State University, Columbus OH 43210

²AFRL/RYAP, Wright-Patterson AFB OH 45433

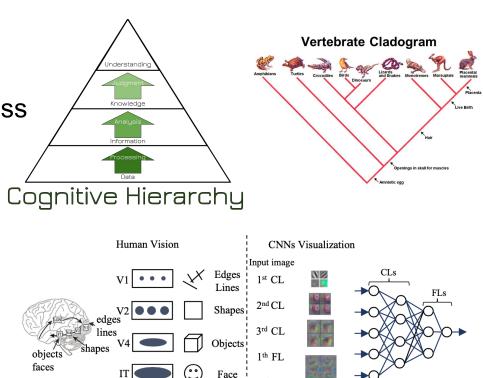
This work is supported by the U.S. Air Force Research Laboratory

O Hierarchical Reasonings

 Hierarchical reasoning prevails in many areas

Hierarchical cognitive process

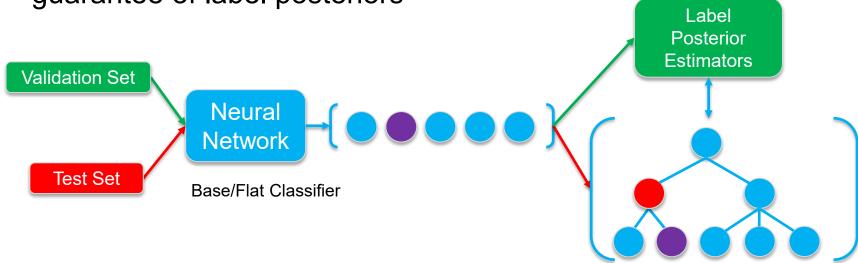
- Taxonomy in biology
- Natural hierarchical representation of visual features in our brain



Overview of Our Approach

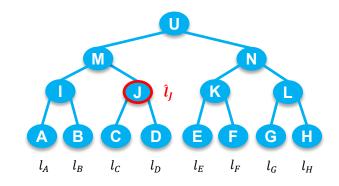
- Serves as a post processing step after a given base model
- Estimates label posteriors from base model logits output of the validation set

 Produces hierarchical predictions to test set with statistical guarantee of label posteriors



Generalized Logits

- Generalized logit = derived logit for a nonterminal class
- Computed from base classifier's softmax value of s_I



$$s_{J} = s_{C} + s_{D} = \frac{e^{l_{C}}}{e^{l_{C}} + \sum_{k \neq C} e^{l_{k}}} + \frac{e^{l_{D}}}{e^{l_{D}} + \sum_{k \neq D} e^{l_{k}}} = \frac{\sum_{i \in \{C, D\}} e^{l_{i}}}{\sum_{i \in \{C, D\}} e^{l_{i}} + \sum_{k \notin \{C, D\}} e^{l_{k}}} \triangleq \frac{e^{\hat{l}_{J}}}{e^{\hat{l}_{J}} + \sum_{k \notin J} e^{l_{k}}}$$

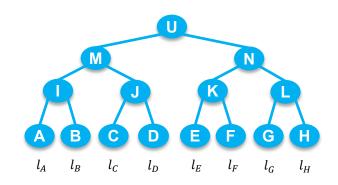
 \hat{l}_I is the **generalized logit** of class/node J

$$\hat{l}_J = \ln\left(\mathbf{e}^{\hat{l}_J}\right) = \ln\left(\sum_{i \in \{C,D\}} \mathbf{e}^{l_i}\right)$$

4

Inference

- Start with initial terminal label hypothesis
 - Option 1: Select via argmax of base classifier's logits
 - Option 2: <u>Select via argmax of estimated</u> terminal label posteriors

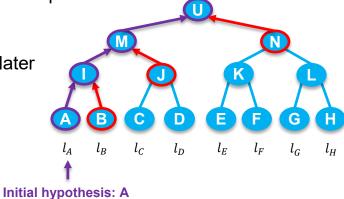


- Examine confidence of initial terminal label hypothesis
 - Is it above a given confidence threshold?
 - If YES, return that label
 - If NO, examine the remaining ancestral classes until meeting the threshold (customized)

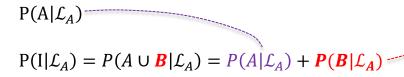
Root node of the hierarchy has posterior of 1.0

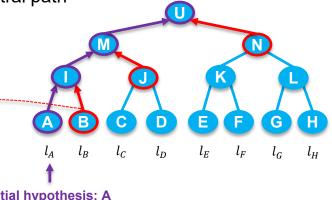
 Consider the binary tree shown on the right, evaluate the ancestral path label posteriors:

 $P(A|\mathcal{L}_A)$ \mathcal{L}_A is the generalized logit vector to be introduced later



Consider the binary tree shown on the right, evaluate the ancestral path label posteriors:





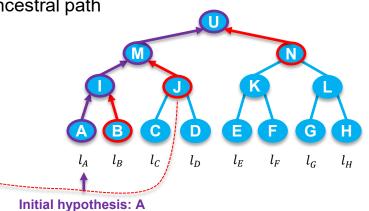
Initial hypothesis: A

 Consider the binary tree shown on the right, evaluate the ancestral path label posteriors:

$$P(A|\mathcal{L}_A)$$

$$P(I|\mathcal{L}_A) = P(A \cup B|\mathcal{L}_A) = P(A|\mathcal{L}_A) + P(B|\mathcal{L}_A)$$

$$P(M|\mathcal{L}_A) = P(I \cup J|\mathcal{L}_A) = P(I|\mathcal{L}_A) + P(C \cup D|\mathcal{L}_A)$$



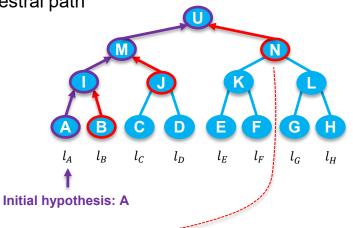
• Consider the binary tree shown on the right, evaluate the ancestral path label posteriors:

$$P(A|\mathcal{L}_A)$$

$$P(I|\mathcal{L}_A) = P(A \cup B|\mathcal{L}_A) = P(A|\mathcal{L}_A) + P(B|\mathcal{L}_A)$$

$$P(M|\mathcal{L}_A) = P(I \cup J|\mathcal{L}_A) = P(I|\mathcal{L}_A) + P(C \cup D|\mathcal{L}_A)$$

$$P(U|\mathcal{L}_A) = P(M \cup N|\mathcal{L}_A) = P(M|\mathcal{L}_A) + P(E \cup F \cup G \cup H|\mathcal{L}_A)$$



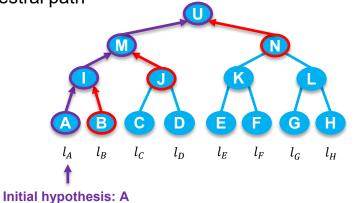
 Consider the binary tree shown on the right, evaluate the ancestral path label posteriors:

$$P(A|\mathcal{L}_A)$$

$$P(I|\mathcal{L}_A) = P(A \cup B|\mathcal{L}_A) = P(A|\mathcal{L}_A) + P(B|\mathcal{L}_A)$$

$$P(M|\mathcal{L}_A) = P(I \cup J|\mathcal{L}_A) = P(I|\mathcal{L}_A) + P(C \cup D|\mathcal{L}_A)$$

$$P(U|\mathcal{L}_A) = P(M \cup N|\mathcal{L}_A) = P(M|\mathcal{L}_A) + P(E \cup F \cup G \cup H|\mathcal{L}_A)$$



L1 normalization before inference:

$$P(A|\mathcal{L}_A) + P(B|\mathcal{L}_A) + P(C \cup D|\mathcal{L}_A) + P(E \cup F \cup G \cup H|\mathcal{L}_A) \triangleq 1.0$$

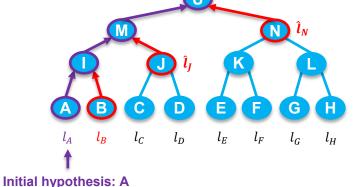
Consider the binary tree shown on the right, evaluate the ancestral path label posteriors:

$$P(A|\mathcal{L}_A)$$

$$P(I|\mathcal{L}_A) = P(A \cup B|\mathcal{L}_A) = P(A|\mathcal{L}_A) + P(B|\mathcal{L}_A)$$

$$P(M|\mathcal{L}_A) = P(I \cup J|\mathcal{L}_A) = P(I|\mathcal{L}_A) + P(C \cup D|\mathcal{L}_A)$$

$$P(II|\mathcal{L}_A) = P(M \cup N|\mathcal{L}_A) = P(M|\mathcal{L}_A) + P(E \cup E \cup I)$$



 $P(U|\mathcal{L}_{A}) = P(M \cup N|\mathcal{L}_{A}) = P(M|\mathcal{L}_{A}) + P(E \cup F \cup G \cup H|\mathcal{L}_{A})$

L1 normalization before inference:

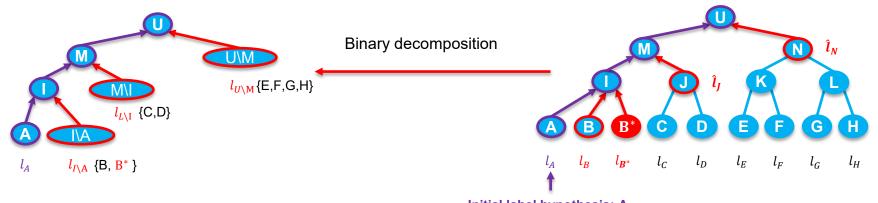
$$P(A|\mathcal{L}_A) + P(B|\mathcal{L}_A) + P(C \cup D|\mathcal{L}_A) + P(E \cup F \cup G \cup H|\mathcal{L}_A) \triangleq 1.0$$

$$A \qquad B \qquad N$$

Extension to Non-Binary Tree

Adding a node B* under node I

```
\begin{aligned} \mathbf{P}(\mathbf{A}|\mathcal{L}_{A}) \\ \mathbf{P}(\mathbf{I}|\mathcal{L}_{A}) &= P(A|\mathcal{L}_{A}) + P(B \cup \mathbf{B}^{*}|\mathcal{L}_{A}) = P(A|\mathcal{L}_{A}) + P(I \setminus A|\mathcal{L}_{A}) \\ \mathbf{P}(\mathbf{M}|\mathcal{L}_{A}) &= P(I|\mathcal{L}_{A}) + P(C \cup D|\mathcal{L}_{A}) = P(I|\mathcal{L}_{A}) + P(M \setminus I|\mathcal{L}_{A}) \\ \mathbf{P}(\mathbf{U}|\mathcal{L}_{A}) &= P(M|\mathcal{L}_{A}) + P(E \cup F \cup G \cup H|\mathcal{L}_{A}) = P(M|\mathcal{L}_{A}) + P(U \setminus M|\mathcal{L}_{A}) \triangleq 1.0 \end{aligned}
```

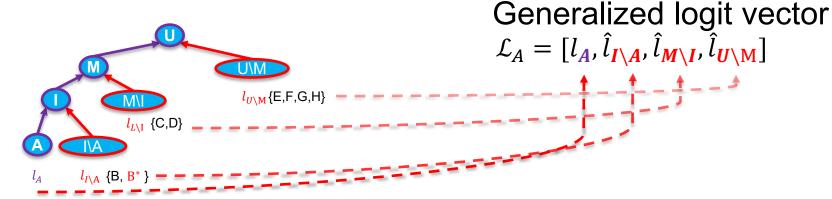


Initial label hypothesis: A

Generalized Logit Feature Vector

Adding a node B* under node I

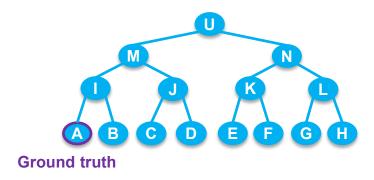
```
P(A|\mathcal{L}_A)
P(I|\mathcal{L}_A) = P(A|\mathcal{L}_A) + P(B \cup B^*|\mathcal{L}_A) = P(A|\mathcal{L}_A) + P(I \setminus A|\mathcal{L}_A)
P(M|\mathcal{L}_A) = P(I|\mathcal{L}_A) + P(C \cup D|\mathcal{L}_A) = P(I|\mathcal{L}_A) + P(M \setminus I|\mathcal{L}_A)
P(U|\mathcal{L}_A) = P(M|\mathcal{L}_A) + P(E \cup F \cup G \cup H|\mathcal{L}_A) = P(M|\mathcal{L}_A) + P(U \setminus M|\mathcal{L}_A) \triangleq 1.0
```



• Experiments

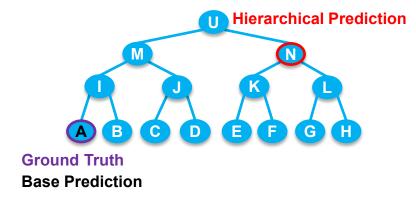
- We conducted experiments on 4 datasets with
 - ImageNet-Animal (398 terminal classes) [Davis et al., 2019]
 - CIFAR100 (100 terminal classes) [Krizhevsky, 2009]
 - CIFAR10 (10 terminal classes) [Krizhevsky, 2009]
 - Fashion-MNIST (10 terminal classes) [Xiao et al., 2017]
- Semantic hierarchy for each dataset is derived from WordNet [Davis et al., 2019]
- Compared our method with the two most related works
 - [Deng et al., 2012] employed optimization of tradeoff between accuracy and label specificity
 - [Davis et al., 2019] proposed a non-parametric histogram binning approach

 Hierarchical Classification Metrics based on originally correct (C) and originally incorrect (IC) predictions



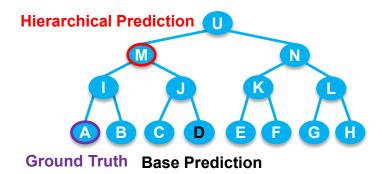
- Hierarchical Classification Metrics based on originally correct (C) and originally incorrect (IC) predictions
 - C-Corrupt: The fraction of original correct terminal predictions relabeled to incorrect labels

	Ground Truth	Base Prediction	Hierarchical Prediction
C-Corrupt	Α	A	N



- Hierarchical Classification Metrics based on originally correct (C) and originally incorrect (IC) predictions
 - ▼ C-Corrupt: The fraction of original correct terminal predictions relabeled to incorrect labels
 - ▲ **IC-Reform**: The fraction of original incorrect terminal predictions generalized to correct labels

	Ground Truth	Base Prediction	Hierarchical Prediction
C-Corrupt	Α	Α	N
IC-Reform	Α	D	M



O Metrics

- Hierarchical Classification Metrics based on originally correct (C) and originally incorrect
 (IC) predictions
 - ▼ C-Corrupt: The fraction of original correct terminal predictions relabeled to incorrect labels
 - ▲ IC-Reform: The fraction of original incorrect terminal predictions generalized to correct labels
 - ▼ C-Withdrawn: The fraction of original correct terminal predictions relabeled to root

	Ground Truth	Base Prediction	Hierarchical Prediction
C-Corrupt	Α	Α	N
IC-Reform	Α	D	M
C-Withdrawn	Α	Α	U

Hierarchical Prediction W A B C D E F G H Ground Truth Base Prediction

- Hierarchical Classification Metrics based on originally correct (C) and originally incorrect (IC) predictions
 - ▼ C-Corrupt: The fraction of original correct terminal predictions relabeled to incorrect labels
 - ▲ IC-Reform: The fraction of original incorrect terminal predictions generalized to correct labels
 - ▼ C-Withdrawn: The fraction of original correct terminal predictions relabeled to root
 - IC-Withdrawn: The fraction of original incorrect terminal predictions relabeled to root

	Ground Truth	Base Prediction	Hierarchical Prediction
C-Corrupt	Α	Α	N
IC-Reform	Α	D	M
C-Withdrawn	Α	Α	U
IC-Withdrawn	Α	E	U

Hierarchical Prediction M B C B Ground Truth Hierarchical Prediction

- Hierarchical Classification Metrics:
 - Accuracy: the fraction of correct hierarchical predictions (root is considered correct)
 - Average scaled Information Gain (avg-sIG): corresponds to average depth of label generalizations in terms of Information Gain [Deng et al., 2012]

$$sIG(N_i) = \frac{log_2|T| - log_2(|\downarrow(N_i)|)}{log_2|T|}$$

|T| is the total number of terminal classes $|\downarrow(N_i)|$ Is the number of terminal descendants of class N_i

$$avg$$
- $sIG(N_i) = \frac{1}{M} \sum_{i=1}^{M} sIG(N_i)$

© Experiments: ImageNet-Animal

- ImageNet-Animal derived from WordNet
 - Due to space limit, the lower part of the tree is omitted
 - # in (#) indicates the number of terminal classes at the branch

	Unknown																												
	Vertebrate															Inve	rtebr	ate											
Mammal Reptile Bird Fish														Arthro	opod														
	Placental												Diapsid			Aquat	ic	Oscine		Teleost			Insect						
Ungulat	e	Prima	te				(Carnivore								Snake	Lizard			Wading				fish					
Even-toed		Monkey				C	ani	ne				Feline								bird									
ungulate						Do	og																						
				Hunting Working · · ·																									
				Hound Terrier Sporting Shepherd · · ·																									
(15)	(2)	(13)	(7)	(19)	(26)	(17)	(1)	(12)	(18)	(25)	(12)	(13)	(15)	(17)	(6)	(17)	(11)	(3)	(5)	(16)	(8)	(11)	(24)	(10)	(6)	(8)	(27)	(20)	(14)

© Experiments: ImageNet-Animal

- Highest IC-Reform
- Highest overall accuracy

	Base	Prop	osed	Deng et	al. 2012	Davis et al. 2019			
Confidence	-	90%	95%	90%	95%	90%	95%		
C-Corrupt	-	.00	.00	.03	.01	.00	.00		
IC-Reform	-	.96	.98	.48	.72	.67	.70		
Accuracy	0.85	.99	1.00	.89	.95	.95	.95		
avg-sIG	0.85	.30	.20	.78	.69	.71	.68		
C-Withdrawn	-	.07	.13	.00	.01	.01	.01		
IC-Withdrawn	-	.09	.14	.00	.06	.03	.05		

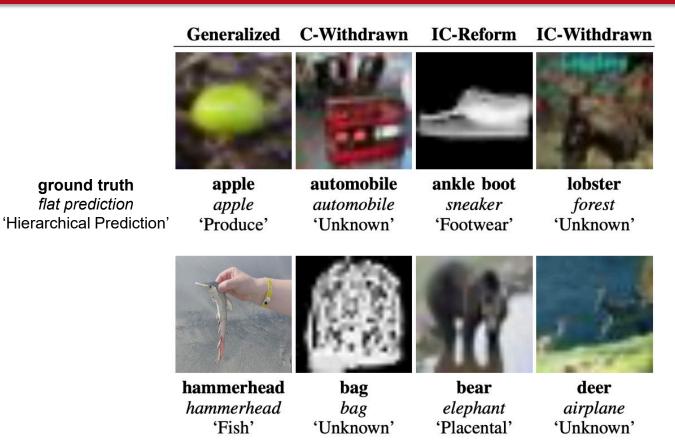
© Experiments: ImageNet-Animal

- Highest IC-Reform
- Highest overall accuracy
- Lowest avg-sIG corresponding to high withdrawns

		Base	Prop	osed	Deng et	al. 2012	Davis et al. 2019			
	Confidence	-	90%	95%	90%	95%	90%	95%		
	C-Corrupt	-	.00	.00	.03	.01	.00	.00		
	IC-Reform	-	.96	.98	.48	.72	.67	.70		
	Accuracy	0.85	.99	1.00	.89	.95	.95	.95		
_	avg-sIG	0.85	.30	.20	.78	.69	.71	.68		
	C-Withdrawn	-	.07	.13	.00	.01	.01	.01		
	IC-Withdrawn	-	.09	.14	.00	.06	.03	.05		

Visual Examples Across Datasets

ground truth flat prediction



Conclusion

- Estimation of label posteriors using generalized logits
 - Efficient and compact conditional vector
 - Mitigate issues of lack of validation data
- Label generalization based on semantic hierarchy
 - Bottom-up probabilistic inference framework
 - Able to correct mistakes made by the flat base classifier

Thank you!