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1. For the interpretability of GANs, due to the black-box property of
deep neural models, hardly can we understand how the latent
variables affect the generation process.

2. We use t-SNE to analyze the latent representations of Fashion-
MNIST samples and find that the latent representations of samples
from different classes can be well-separated.

3. It motivated us to quantify the importance of different latent
dimensions for specific concept generation.

Fig. 1: t-SNE analysis on latent representations of Fashion-MNIST
dataset. Points in different color are 2D features of latent represen-
tations belong to different classes.



NFRBELL XS

University of Science and Technology of China

* We first propose to interpret the latent space of GANs by quantifying the
correlation between the latent inputs and the generated outputs.

» We demonstrate that for generating contents of specific concept, the
importance of different latent variables may varies greatly. Moreover, we
propose an optimization-based method to find controlling latent variables
for specific concept.

» The proposed method can fulfill controllable concept manipulation in
generated images via controlling variables discovering and intervention.
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Fig. 2: The proposed method for analyzing the correlation between latent space and output image space of GANs. Top part illustrate the
process of finding high-correlated latent dimensions by sequential intervention or adding weights on latent variables. Bottom part denote the
process of latent intervention on top or bottom ranked latent dimensions.
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Fig. 3: Classification score change with respect to intervention on Fig. 4: Number distribution of latent dimensions with respect to

different latent dimensions. Each color represent a latent dimension. different APCR value range.
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through intervening on controlling set of latent dimensions (final
manipulation results).

Fig. 5: Intervene on controlling set of latent dimensions.

Classes | class0  class] class?  class3  class4d

IRer | 07 0.9 0.7 0.8 04

Classes | class5  classt  class7  class®  class9

IRep | 1 0.7 0.9 0.7 0.7

TABLE I: Intersection ration of high-correlated latent dimensions
derived by sequential intervention and optimization

Fig. 7: Controllable concept manipulation on UT Zappos50k through
intervening on controlling set of latent dimensions.
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