User-Independent Gaze Estimation by Extracting Pupil Parameter and Its Mapping to the gaze Angle

Sang Yoon Han, Nam Ik Cho

jaegal88@ispl.snu.ac.kr, nicho@snu.ac.kr

Overall Algorithm

* Proposed Method

- Apply network(UNet) to frames for segment pupil candidate area.
- Confidence analysis to get frame with clear pupil area.
- Uses ellipse parameter acquired from pupil area to gaze difference network.
- Get gaze with using current frame and reference frame.

Pupil segmentation Dataset

* Unlike the existing CNN-based pupil detection methods based on the regression, we use the CNN for the pupil segmentation.
* Pupil boundary edges have more feature than pupil center.
* Traditional methods finds pupil center from fitting ellipse using pupil edges.

Blink detection

* Proposed Method

- Confidence analysis to get frame with clear pupil area.
- The red pixel is the pixel belonging to the fitted ellipse
- The green pixel is the pixel not belonging to the fitted ellipse

$$
\begin{aligned}
\rho & =\sum_{p \in \Omega_{O}} S_{p} \\
\phi & =\frac{\sum_{p \in \Omega_{O_{\text {edge }}} B^{i}}^{\sum_{p \in \Omega_{O_{\text {edge }}}}{ }^{1}}}{}
\end{aligned}
$$

Confidence : $\varphi=\frac{\rho+\phi}{2}>0.95$
where $\quad B_{p q r}^{i}= \begin{cases}1, & \text { if } p \in \Omega_{\text {Ellipse }} \\ 0, & \text { otherwise }\end{cases}$

Gaze Estimation Network

* Proposed Gaze Estimation Network

- Uses ellipse parameter difference acquired from reference frame and current frame
- Multiply input parameter twice in order to use the ellipse parameter of the pupil as the second polynomial variable.
- Result of passing the fully connected layer is to do the dot product with Equ. 2 again before getting to the output.

Gaze Estimation Results

ISPL

* Experiment

- The angular error in gaze detection on each users using using proposed algorithm. (unit: degree)
- Compute the error of the estimated gaze point and marker point position on the world camera while looking at the marker at each position of the monitor.
- Gazing points are composed of under 20 degree from center.

Comparison

* Experiment

- Results outside the calibrated range show quite different accuracy.
- Accuracy of networks that directly estimate X, Y coordinate of gaze over 20deg shows bad results

Comparison : Re-calibration

ISPL

* Experiment

- Calibration Drift
- Recalibrating each time a calibration drift occurs makes user cumbersome
- Proposed method of using difference to minimize the calibration process when re-calibration.

