

Vacant Parking Space Detection based on Task Consistency and Reinforcement Learning

Manh-Hung Nguyen

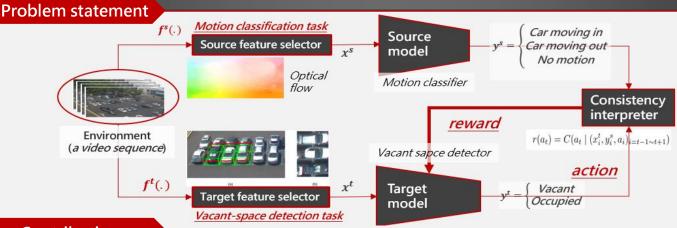
Faculty of Electrical Electronic Engineering, HCM-UTE, Vietnam hungnm@hcm.ute.edu.vn

Tzu-Yin Chao

Department of Computer Science, National Chiao Tung University, Taiwan chaoziyin@gmail.com

Ching-Chun Huang

Department of Computer Science, National Chiao Tung University, Taiwan chingchun@cs.nctu.edu.tw



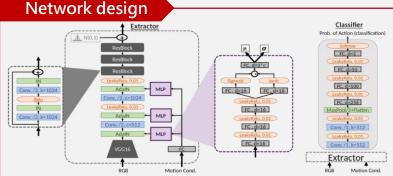
Contributions

- We proposed a novel framework that allows the system to train a target model (e.g., a vacant-space detector) via the <u>task consistency</u> with a source model (e.g., a car motion classifier).
- Unlike transfer learning, the source model and the target model in our framework are not restricted to deal with the same type of task.
- The proposed framework is suitable for online learning, which is lable-free (unsupervised rewards).
- We test the method on a parking lot scenario and corrupted rewards are filtered out automatically

Algorithm

Algorithm 1 Task Consistency learning (TCL) 1: **procedure** TCL(Require: $M_{\phi}^{s}(x_{i}^{s})$, $f^s(s_t), f^t(s_t)$; Output: target network θ) $D_{online} = \emptyset$ Random initialize θ while collect training trajectories do Data collection 5: Query s_t from the environment $x_t^s = f^s(s_t), x_t^t = f^t(s_t)$ ▶ Select source and target input ▶ Predict source decision if $P(y_t^s) > \delta$ then Extract $x_i^t = f_t(s_i) \mid i = 1 \sim T$ from the segment trajectory around the frame t^{th} . end if Add the tuple $(x_i^s, \hat{y}_i^s, x_i^t)_{i=1:T}$ into D_{online} 11. end while 12: while Training do 13: for each training trajectory do 14: Run the target / policy model $\pi_{\theta}(a_t \mid x_t)$ to 15: get a_t or y_t 16 Estimate $r(a_t)$ by equation (5) Estimate baseline value by equation (6) 17: 18: Estimate the gradient in equation (4) Update the policy $\theta \leftarrow \theta + \alpha \nabla_{\theta} J(\theta)$ 19: end for 20: end while 21: Repeat the data collection process in the 4th line Repeat the training process in the 13th line 23: 24: end procedure

Reward design 2.5 2.0 1.5 12.5 Forward Reward Backward Reward $r_F(a_t \mid a_{t-1}, y_{t-1}^s)$ $r_B(a_t \mid a_{t+1}, y_{t+1}^s)$ occupy vacant occupy vacant y_{t+1}^s $(a_t = 0)$ $(a_t = 1)$ $(a_t = 0)$ $(a_t = 1)$ CI_{t+1} CI_{t-1} $1 * \lambda$ 0 0 $1 * \lambda$ NM_{t+1} NM_{t-1} P_{t-1}^{O} P_{t-1}^V P_{t+1}^{O} P_{t+1}^V \overline{CO}_{t+1} CO_{t-1} 0 $1 * \lambda$ $1 * \lambda$ 0



Experimental settings 120 videos from a 90degree view camera Local slot normalization Each video includes 500 frames Optical Crop the motion segment from the optical flow Vacant-space Extract 1530 **Training** detection training trajectories process model Application stage Lambda selection

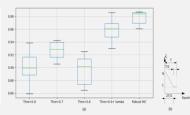
In an early training phase (a) No motion Vaćant Learning from corrupted trajectories 0 3 6 9 12 15 18 21 24 27 30 33 36 39 42 45 48 51 54 57 6 9 12 15 18 21 24 27 30 33 36 39 42 45 48 51 54 57 $(b)\lambda = 60$ · "0" means vacant state "1" means occupy state.

Learning from an imperfect motion classifier

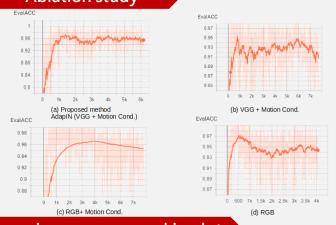
The number of clean/noisy trajectories under different thresholds identified by the baseline motion classifier and robust motion classifier. (Evaluate on 1530 trajectories)

· Cl: Clean, No: Noisy, MC: Motion Classifier

	Basedline MC		Robust MC		0.98 -
δ	Cl	No	Cl	No	0.94
0.6	950	142	1406	27	0.92
0.7	666	82	1292	11	0.90
8.0	393	33	1090	0	0.86 Thre=0.8 Thre=0.7



Ablation study



Learning on a new parking lot

Supervised learning (Fine	97.93	98.18	98.57	98.76	99.21
tune)	(M=600)	(M=1000)	(M=1400)	(M=1700)	(M=2000)
Task Consistency learning	98.84 *	99.15 *	99.37 *	99.57 *	99.69 *
(Fine tune)	(N=300)	(N=500)	(N=700)	(N=850)	(N=1000)
Task consistency learning (98.15	98.38	98.45	99.48	99.54
Train from scratch)	(N=300)	(N=500)	(N=700)	(N=850)	(N=1000)

M means the number of training samples for supervised learning.

N means the number of training trajectories for task consistency learning.

45-degree view(as new parking lot scenario)

90-degree view (as original parking lot scenario)

Conclusions

- We proposed a task consistency framework, which enables the system to learn a target task from a source task in a reinforcement learning manner.
- The framework has two benefits:
 - The source model and target model are not restricted to deal with the same type of task.
 - By applying reinforcement learning approach with unsupervised rewards, our framework is label-free.
- The framwork is applied to learn a vacant space detector based on a motion classifier:
 - The reward design is capable of filtering out some easy corrupted rewards automatically.