Part-based Collaborative Spatio-temporal Feature Learning for Cloth-changing Gait Recognition

Lingxiang Yao¹, Worapan Kusakunniran², Qiang Wu¹, Jian Zhang¹, and Jingsong Xu¹ ¹School of Electrical and Data Engineering, University of Technology Sydney ²Faculty of Information and Communication Technology, Mahidol University

Introduction

- Gait provides a non-contact way of identifying a target person in a distance without his/her co-operation, which enables gait to be used in security surveillance and forensic authentication.
- The result of image/video-based gait recognition is influenced by exterior factors. Among these factors, clothing changes can be treated as one of the most challenging factors for gait recognition.

Proposed Method

Motivations:

- Although human gaits vary in different dressing patterns, they are still related to some extent, depending on the degree of clothing changes.
- For each person, gaits in different dressing patterns can be divided into two parts: the parts unaffected or less affected by clothing variations and the parts largely affected.
- It is reasonable to generate a robust feature representation for cloth-changing gait recognition from the non/less affected body parts.

Proposed Method: Human Body Segmentation

The Head Region

The Lower Region

Proposed Method: Snapshots from View of T - W

Proposed Method: Part-Based Collaborative Feature Learning

Experiments

- The proposed method has been verified on two gait datasets,
 - CASIA Gait Dataset B, one of the most widely-used gait datasets.
 - OU-ISIR Treadmill Dataset B, the maximum number of clothing conditions.

Experiments On CASIA-B

Gallery NM#1-4		0°-180°											
Probe CL#1-2		0°	18°	36°	54°	72°	90°	108°	126°	144°	162°	180°	Mean
ST(24)	GaitSet[1] (30frames)	29.4	43.1	49.5	48.7	42.3	40.3	44.9	47.4	43.0	35.7	25.6	40.9
	Ours (30frames)	34.0	47.1	51.0	54.0	52.9	48.9	49.8	50.3	48.2	41.4	30.5	46.2
	GaitSet[1] (64frames)	37.4	50.1	54.2	52.0	49.6	44.9	47.9	48.6	46.6	40.0	29.3	45.5
	Ours (64frames)	38.1	52.3	57.9	59.1	56.2	51.3	53.8	56.6	56.3	48.0	31.2	51.0
MT(62)	AE [2]	18.7	21.0	25.0	25.1	25.0	26.3	28.7	30.0	23.6	23.4	19.0	24.2
	MGAN [3]	23.1	34.5	36.3	33.3	32.9	32.7	34.2	37.6	33.7	26.7	21.0	31.5
	GaitSet[1] (30frames)	52.0	66.0	72.8	69.3	63.1	61.2	63.5	66.5	67.5	60.0	45.9	62.5
	Ours (30frames)	59.2	74.7	77.4	74.5	69.5	66.3	69.8	74.4	73.6	69.2	52.5	69.2
	GaitSet[1] (64frames)	63.8	72.5	78.0	76.8	67.3	64.4	67.1	71.2	71.7	68.3	52.7	68.5
	Ours (64frames)	61.8	77.6	83.1	80.4	74.3	70.5	75.7	80.8	81.1	74.9	54.9	73.4
LT(74)	CNN-LB [4]	37.7	57.2	66.6	61.1	55.2	54.6	55.2	59.1	58.9	48.8	39.4	54.0
	GaitNet [5]	42.1	-	-	70.7	-	70.6	-	69.4	-	-	-	63.2
	GaitSet[1] (30frames)	61.4	75.4	80.7	77.3	72.1	70.1	71.5	73.5	73.5	68.4	50.0	70.4
	Ours (30frames)	64.2	80.9	83.0	79.5	74.3	69.1	74.8	78.5	81.0	77.0	60.3	74.8
	GaitSet[1] (64frames)	69.3	82.4	83.3	78.7	74.3	70.5	74.9	78.0	77.6	74.7	60.8	75.0
	Ours (64frames)	71.8	86.6	87.7	83.2	78.3	75.4	81.0	85.2	84.9	82.0	64.1	80.0

Experiments On OU-ISIR Treadmill B

Probe Set	Ours	Anusha and Jaidhar [6]	Deng et al. [7]	Probe Set	Ours	Anusha and Jaidhar [6]	Deng et al. [7]
Type 0	99.7	94.0	100.0	Type H	100.0	95.0	94.1
Type 2	100.0	93.5	100.0	Type I	100.0	98.5	98.5
Type 3	100.0	91.6	100.0	Type J	100.0	91.5	91.2
Type 4	100.0	94.1	98.5	Туре К	100.0	87.5	98.5
Type 5	100.0	94.5	94.1	Type L	100.0	90.0	100.0
Туре б	100.0	92.0	91.2	Type M	100.0	97.5	97.1
Type 7	100.0	94.2	94.1	Type N	100.0	85.5	100.0
Type 8	100.0	94.5	94.1	Type P	100.0	91.1	100.0
Type 9	100.0	92.0	97.1	Type R	100.0	86.2	88.2
Type A	100.0	91.6	91.2	Type S	100.0	89.1	95.6
Type B	99.9	88.2	95.6	Type T	100.0	95.0	94.1
Type C	100.0	94.5	94.1	Type U	100.0	95.5	94.1
Type D	100.0	92.0	100.0	Type V	100.0	91.6	91.2
Type E	100.0	91.5	91.2	Type X	100.0	90.1	100.0
Type F	100.0	93.1	100.0	Type Y	100.0	89.0	100.0
Type G	99.8	89.1	98.5	Type Z	100.0	87.2	98.5

References

- [1] H. Chao, Y. He, J. Zhang, and J. Feng, "Gaitset: Regarding gait as a set for cross-view gait recognition," arXiv preprint arXiv:1811.06186, 2018.
- [2] S. Yu, H. Chen, Q. Wang, L. Shen, and Y. Huang, "Invariant feature extraction for gait recognition using only one uniform model," Neurocomputing, vol. 239, pp. 81–93, 2017.
- [3] Y. He, J. Zhang, H. Shan, and L. Wang, "Multi-task gans for viewspecific feature learning in gait recognition," IEEE Trans. Inf. Forensics Security, vol. 14, no. 1, pp. 102–113, 2018.
- [4] Z. Wu, Y. Huang, L. Wang, X. Wang, and T. Tan, "A comprehensive study on cross-view gait based human identification with deep cnns," IEEE Trans. Pattern Anal. Mach. Intell., vol. 39, no. 2, pp. 209–226, 2016.
- [5] Z. Zhang, L. Tran, X. Yin, Y. Atoum, X. Liu, J. Wan, and N. Wang, "Gait recognition via disentangled representation learning," in Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2019, pp. 4710–4719.
- [6] R. Anusha and C. Jaidhar, "Clothing invariant human gait recognition using modified local optimal oriented pattern binary descriptor," Multimedia Tools and Applications, pp. 1–24, 2019.
- [7] M. Deng and C. Wang, "Gait recognition under different clothing conditions via deterministic learning," IEEE/CAA Journal of Automatica Sinica, 2018.

Thank you!