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Introduction
• Gait provides a non-contact way of identifying a target person in a distance 

without his/her co-operation, which enables gait to be used in security surveillance 
and forensic authentication.

• The result of image/video-based gait recognition is influenced by exterior factors. 
Among these factors, clothing changes can be treated as one of the most 
challenging factors for gait recognition.
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Motivations:
• Although human gaits vary in different dressing patterns, they 

are still related to some extent, depending on the degree of 

clothing changes. 

• For each person, gaits in different dressing patterns can be 

divided into two parts: the parts unaffected or less affected by 

clothing variations and the parts largely affected. 

• It is reasonable to generate a robust feature representation for 

cloth-changing gait recognition from the non/less affected 

body parts.

Proposed Method
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Proposed Method:
Part-Based Collaborative Feature Learning
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Experiments
• The proposed method has been verified on two gait datasets,

• CASIA Gait Dataset B, one of the most widely-used gait datasets.

• OU-ISIR Treadmill Dataset B, the maximum number of clothing conditions.
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Experiments On CASIA-B
Gallery NM#1-4 0°-180°

Probe CL#1-2 0° 18° 36° 54° 72° 90° 108° 126° 144° 162° 180° Mean

ST(24)

GaitSet[1] (30frames) 29.4 43.1 49.5 48.7 42.3 40.3 44.9 47.4 43.0 35.7 25.6 40.9

Ours (30frames) 34.0 47.1 51.0 54.0 52.9 48.9 49.8 50.3 48.2 41.4 30.5 46.2

GaitSet[1] (64frames) 37.4 50.1 54.2 52.0 49.6 44.9 47.9 48.6 46.6 40.0 29.3 45.5

Ours (64frames) 38.1 52.3 57.9 59.1 56.2 51.3 53.8 56.6 56.3 48.0 31.2 51.0

MT(62)

AE [2] 18.7 21.0 25.0 25.1 25.0 26.3 28.7 30.0 23.6 23.4 19.0 24.2

MGAN [3] 23.1 34.5 36.3 33.3 32.9 32.7 34.2 37.6 33.7 26.7 21.0 31.5

GaitSet[1] (30frames) 52.0 66.0 72.8 69.3 63.1 61.2 63.5 66.5 67.5 60.0 45.9 62.5

Ours (30frames) 59.2 74.7 77.4 74.5 69.5 66.3 69.8 74.4 73.6 69.2 52.5 69.2

GaitSet[1] (64frames) 63.8 72.5 78.0 76.8 67.3 64.4 67.1 71.2 71.7 68.3 52.7 68.5

Ours (64frames) 61.8 77.6 83.1 80.4 74.3 70.5 75.7 80.8 81.1 74.9 54.9 73.4

LT(74)

CNN-LB [4] 37.7 57.2 66.6 61.1 55.2 54.6 55.2 59.1 58.9 48.8 39.4 54.0

GaitNet [5] 42.1 - - 70.7 - 70.6 - 69.4 - - - 63.2

GaitSet[1] (30frames) 61.4 75.4 80.7 77.3 72.1 70.1 71.5 73.5 73.5 68.4 50.0 70.4

Ours (30frames) 64.2 80.9 83.0 79.5 74.3 69.1 74.8 78.5 81.0 77.0 60.3 74.8

GaitSet[1] (64frames) 69.3 82.4 83.3 78.7 74.3 70.5 74.9 78.0 77.6 74.7 60.8 75.0

Ours (64frames) 71.8 86.6 87.7 83.2 78.3 75.4 81.0 85.2 84.9 82.0 64.1 80.0



Experiments On OU-ISIR Treadmill B
Probe Set Ours Anusha and Jaidhar [6] Deng et al. [7]

Type 0 99.7 94.0 100.0

Type 2 100.0 93.5 100.0

Type 3 100.0 91.6 100.0

Type 4 100.0 94.1 98.5

Type 5 100.0 94.5 94.1

Type 6 100.0 92.0 91.2

Type 7 100.0 94.2 94.1

Type 8 100.0 94.5 94.1

Type 9 100.0 92.0 97.1

Type A 100.0 91.6 91.2

Type B 99.9 88.2 95.6

Type C 100.0 94.5 94.1

Type D 100.0 92.0 100.0

Type E 100.0 91.5 91.2

Type F 100.0 93.1 100.0

Type G 99.8 89.1 98.5

Probe Set Ours Anusha and Jaidhar [6] Deng et al. [7]

Type H 100.0 95.0 94.1

Type I 100.0 98.5 98.5

Type J 100.0 91.5 91.2

Type K 100.0 87.5 98.5

Type L 100.0 90.0 100.0

Type M 100.0 97.5 97.1

Type N 100.0 85.5 100.0

Type P 100.0 91.1 100.0

Type R 100.0 86.2 88.2

Type S 100.0 89.1 95.6

Type T 100.0 95.0 94.1

Type U 100.0 95.5 94.1

Type V 100.0 91.6 91.2

Type X 100.0 90.1 100.0

Type Y 100.0 89.0 100.0

Type Z 100.0 87.2 98.5
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