Disentangle, Assemble, and Synthesize: Unsupervised Learning to Disentangle Appearance and Location

Hiroaki Aizawa1, Hirokatsu Kataoka2, Yutaka Satoh2, Kunihito Kato1

1Gifu University, Japan
2National Institute of Advanced Industrial Science and Technology (AIST), Japan
Generative Adversarial Nets (GANs) learn to map points in latent space into image space by an adversarial training.
Background

Moreover, the images are morphed from one to another by interpolation between points in latent space.
These capabilities provide us many applications for image synthesis and manipulation.
We can design the conditional GANs that gives the centroids and the class labels for controlling the location and the appearance, respectively.
As the next step for the GANs, we tackle the problem of learning representations that allow us to control only a specific factor in the image for unsupervised image manipulation.
Disentangle-Assemble-Synthesize

To achieve the goal, our DAS learns to:
- Disentangle appearance, x-axis, and y-axis factors,
- Assemble these representations,
- Synthesize images.
Our DAS consists of a latent-specific network, assemble module, and upscale network.
Pipeline: Latent-specific Networks

Given the appearance, x-axis, and y-axis noises, each latent-specific network outputs the feature vector of the corresponding factor.
Pipeline: Assemble Module

Assemble Module assembles the given set of vector into a structurally constrained feature map for disentanglement.
Pipeline: Location Meshgrid

Assemble x-axis and y-axis into location meshgrid

Assemble Module represents the x-axis and y-axis representations as location meshgrid
Pipeline: Structural Constraints

Assemble location and appearance into single feature map

Assemble Module concatenates the location meshgrid with the map tiling the same appearance vector in all positions.
Key idea

Our idea is to prevent the appearance and the location from interacting with each other by packing them into each position of the single feature map.
We perform constraint upscaling and deconvolution upscaling to synthesize images.
Constraint Upscaling

We upscale the constrained feature by pointwise convolution and spatial aggregation along with the given axis direction while maintaining the structural property.
We upscale by a vanilla deconvolution that ignores the property until output size.
How to manipulate images

We can manipulate the image by interpolation of the target factor while fixing the other factors
Visual Results on Translated MNIST
Random sampling by DAS

Interpolation of the appearance

Interpolation of the location
Random sampling by DAS

Interpolation of the appearance

Interpolation of the location
Interpolation of appearance while fixing the location

Location-conditioned GANs

DAS
A comparison between DAS and Conditional GANs

Location-conditioned GANs

DAS

Initial frame

Interpolated frame
A comparison between DAS and Conditional GANs

Location-conditioned GANs and DAS maintain the location when manipulating the appearance.
A comparison between DAS and Conditional GANs

The results show that our manipulation performance was equivalent to the supervised model.
Random sampling by DAS

Interpolation of the appearance

Interpolation of the location
Interpolation of the location while fixing the appearance

Location-conditioned GANs

DAS
A comparison between DAS and Conditional GANs

Location-conditioned GANs

Initial frame

Interpolated frame

DAS

[Images of initial and interpolated frames for both DAS and location-conditioned GANs]
A comparison between DAS and Conditional GANs

When manipulating the location, Location-conditioned GANs do not preserve the appearance while our DAS maintains the appearance.
A comparison between DAS and Conditional GANs

The results show that DAS disentangles the appearance and the location in an unsupervised manner.
Random sampling by DAS

Interpolation of the x-axis direction

Interpolation of the y-axis direction
Detailed interpolation result

Appearance
centroid: \((x, y) = (39.1, 43.5)\)

Location (x axis)
centroid: \((x, y) = (39.1, 43.5)\)

Location (y axis)
centroid: \((x, y) = (39.1, 43.5)\)

Location
centroid: \((x, y) = (39.1, 43.5)\)
Our Contributions

- Our DAS learns to disentangle the appearance, the x-axis, and the y-axis factors, assemble them, and then synthesize images.

- Our DAS learns an explainable, compositional, manipulatable, and disentangled representation, opposite to GAN