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Generative Adversarial Nets (GANs) learn to map points in latent 
space into image spacce by an adversarial training.
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Moreover, the images are morphed from one to another by 
interpolation between points in latent space.



Background

4

GeneratorInput noise

Generative Adversarial Nets (GANs) 

!!

!"
Interpolation

Output

Morphing

These capabilities provide us many applications for image 
synthesis and manipulation
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Conditional GANs 

Additional Information
Centroids and class label 

etc…

Location-conditioned 
output

We can design the conditional GANs that gives the centroids and 
the class labels for controlling the location and the appearance, 
respectively.



Our Goal
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Generative Adversarial Nets (GANs) 

As the next step for the GANs, we tackle the problem of learning 
representations that allow us to control only a specific factor in 
the image for unsupervised image manipulation.
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Manipulating Appearance and Location

D
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To achieve the goal, our DAS learns to :
⁃ Disentangle appearance, x-axis, and y-axis factors,
⁃ Assemble these representations,
⁃ Synthesize images.
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Pipeline

Our DAS consists of a latent-specific network, assemble module, 
and upscale network.
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Pipeline: Latent-specific Networks

Given the appearance, x-axis, and y-axis noises, each latent-
specific network outputs the feature vector of the corresponding 
factor. 
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Pipeline: Assemble Module

Assemble Module assembles the given set of vector into a 
structurally constrained feature map for disentanglement.
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Meshgrid

Assemble x-axis and y-axis into location meshgrid

Pipeline: Location Meshgrid

Assemble Module represents the x-axis and y-axis 
representations as location meshgrid
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Assemble location and appearance into single feature map

Conca
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Pipeline: Structural Constraints

Assemble Module concatenates the location meshgrid with the 
map tiling the same appearance vector in all positions.
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Key idea

Our idea is to prevent the appearance and the location from 
interacting with each other by packing them into each position of 
the single feature map.
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Upscale Networks

We perform constraint upscaling and deconvolution upscaling to 
synthesize images.
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Bilinear interpolation (x2)

Pointwise convolution
Y-axis aggregation

X-axis aggregation
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Constraint Upscaling

We upscale the constrained feature by pointwise convolution and 
spatial aggregation along with the given axis direction while 
maintaining the structural property.
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Deconvolution Upscaling

We upscale by a vanilla deconvolution that ignores the property 
until output size.
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Manipulation

✗
✗

How to manipulate images

We can manipulate the image by interpolation of the target factor 
while fixing the other factors
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Visual Results on Translated MNIST
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Random sampling by DAS
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Interpolation of the appearance Interpolation of the location



Random sampling by DAS
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Interpolation of the appearance Interpolation of the location



Interpolation of appearance 
while fixing the location
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Location-conditioned GANs DAS



A comparison between 
DAS and Conditional GANs
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Location-conditioned GANs and DAS maintain the location when 
manipulating the appearance.
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The results show that our manipulation performance was 
equivalent to the supervised model.



Random sampling by DAS
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Interpolation of the appearance Interpolation of the location



Interpolation of the location 
while fixing the appearance
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Location-conditioned GANs DAS



A comparison between 
DAS and Conditional GANs
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When manipulating the location, Location-conditioned GANs     
do not preserve the appearance while our DAS maintains the 
appearance.



A comparison between 
DAS and Conditional GANs
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The results show that DAS disentangles the appearance and the 
location in an unsupervised manner.



Random sampling by DAS
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Interpolation of the x-axis direction Interpolation of the y-axis direction



Detailed interpolation result
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Our Contributions

- Our DAS learns to disentangle the appearance, the 
x‒axis, and the y-axis factors, assemble them, and 
then synthesize images.

- Our DAS learns an explainable, compositional, 
manipulatable, and disentangled representation, 
opposite to GAN
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