PS T5.5

AdaFilter: Adaptive Filter Design with Local Image Basis Decomposition for Optimizing Image Recognition Preprocessing

<u>Aiga Suzuki</u>^{* † ‡}, Keiichi Ito^{*}, Takahide Ibe^{*}, Nobuyuki Otsu[‡]

*Adacotech Inc., †University of Tsukuba, ‡National Institute of Advanced Science and Technology, Japan

2020-01-14 @ICPR'20

Background

Importance of Image Preprocessing filter design in Image Recognition

Conventional: Finding the combination of typical image filtering

- > Just a combination have lack of representability for complex features
- > To obtain *"optimal filter"*, the model **must design** a filter **in pixel-level**

Our goal

To design the optimal filter, which maximize the expected generalization performance for any task and any models, as not just a combination of typical filters but *in pixel-level*

The problem is the maximization of the generalization performance *R*:

 $\max_{f} R(f)$

[Research problem]

Designing *f* is in the $c \times k^2$ -dimensional space (Blur=>Edge enhance=>Edge Extraction)

Core Ideas

Represent an optimal filter as a linear combination of image basis

- > The *linear filtering* is inherently **emphasizing/inhibiting the specific local patterns**
 - The core idea of Neocognitron, a.k.a. the origin of modern CNNs
- How can we represent essential local patterns effectively?
 - According to the theory of image reconstruction and sparse modeling, the **local image basis** could work as a *"good image atom"*

Methodology: Generating Filter Bases

Extract a Filter basis from sampled local regions of training dataset

- Filter bases is calculated as decomposed components of sampled local region
 - Scan all $k \times k$ local regions from the training dataset to design $k \times k$ filter
- Filter bases is calculated as decomposed components of sampled local region
 - The problem is formulated as a Low-rank approximation for sampled images
 - This study adopted an Independent Component Analysis (ICA) and a sparse PCA (sPCA) algorithms to calculate image bases
- To support a representability of identity preprocessing (*do nothing*), the impulse filter is added to the filter bases

impulse filter, which do nothing

Filter basis (atom) V

Methodology: Maximizing Expected Performance

Maximize the Expected generalization performance as Black-Box Optimization

> By using filter bases V, the problem can be reformulated as a coefficient optimization

- > Expected generalization performance *R* is approximated by validation data (hold-out, K-fold CV)
- > This is the Black-Box optimization, solved by search-based optimization algorithms
 - This study adopted **Bayesian Optimization (TPE)** and **Evolution Strategy (CMA-ES)** to solve this maximization problem

Experiment

- In the experiment, we applied the proposed method to
 - 1. Conventional ML algorithm-based anomaly detection
 - **CNN-based image classification task** 2.
- We compared the generalization performance to **typical preprocessing filters**

1. ML-based Anomaly detection

Task: MVTec AD dataset

Method: HLAC image feature + Subspace Method

Metric: Validation ROC-AUC

2. DL-based Classification

Task: Caltech-101 dataset

Method: ResNet-50 CNN-feature + Linear-SVM

Metric: Validation F-measure

* CNNs are optimized for raw input

"beaver"

Result

1. Anomaly detection for MVTec AD with HLAC+SM

ROCAUC Task	Best score on typical	ICA+ES	sPCA+ES	ICA+TPE	sPCA+TPE
Carpet	0.648	0.843	0.717	0.816	0.722
Grid	0.732	0.908	0.913	0.891	0.901
Leather	0.916	0.965	0.954	0.971	0.969

2. Classification for Caltech-101 with CNN-feature + Linear-SVM

F1-score	Non-filtered	ICA+ES	sPCA+ES	ICA+TPE	sPCA+TPE
Carpet	0.865	0.875	0.839	0.882	0.832

Result for MVTecAD (Carpet class)

Original Image

Result for Caltech-101 (whole dataset)

Original Image

