Multiple Document Datasets Pre-training Improves Text Line Detection With Deep Neural Networks

Mélodie Boillet¹², Christopher Kermorvant¹² and Thierry Paquet²

¹Teklia SAS, Paris, France ²LITIS, Rouen-Normandy University, France

ICPR - 12th January 2021

M. Boillet

Multiple document datasets pre-training improves text line detection with DNN 1 / 11

Comparison with state-of-the-art

Conclusion 00

Presentation overview

2 Model and data

3 Comparison with state-of-the-art

Context	
● 00	

Comparison with state-of-the-art 0000 Conclusion 00

Text line segmentation

- ► Goal: detect the text lines of an image;
- Application: apply a text recognition system on the detected text lines.

000

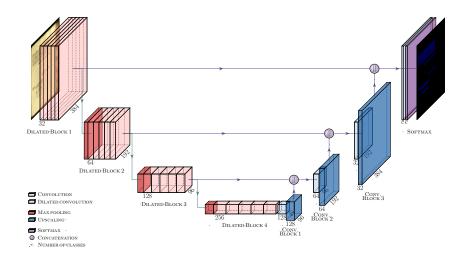
<u>Problems of state-of-the-art system dhSegment</u>

- Needs a lot of annotated data;
- Good results but can still be improved;
- ▶ Too long to analyse a whole corpus: ~ 66 days for 2M images (on a GPU GeForce RTX 2070 8G for Balsac corpus).

Is pre-training on natural scene images the most suitable for working on document images?

Context oo●	$\begin{array}{c} \text{Comparison with state-of-the-art} \\ \text{0000} \end{array}$	
Main goal		

Analyse the impact of a pre-training step on the line segmentation task.


We want a model:

- ▶ Containing no pre-trained part learnt on natural scene images;
- Having less parameters than SOTA on historical documents (dhSegment) and a reduced prediction time;
- Yielding higher accuracy than SOTA on historical documents (dhSegment).

Model and o	j
•o	

lata

Architecture of our Doc-UFCN - inspired by [Yang2017]

M. Boillet

Multiple document datasets pre-training improves text line detection with DNN 5 / 11

Context	

Model and data ⊙● Comparison with state-of-the-art

Conclusion 00

Datasets

Balsac: 913 annotated images

Horae: 557 annotated images [Boillet2019]

The second second

READ-BAD: 2036 annotated images [Grüning2017]

DIVA-HisDB: 120 annotated images [Simistira2016]

Pages of acts extracted from Quebecois registers.

Pages extracted from 500 digitized books of hours.

Archival documents written between 1470 and 1930.

Handwritten pages extracted from 3 medieval manuscripts.

	Comparison with state-of-the-art
	0000

Conclusion 00

Comparison with dhSegment

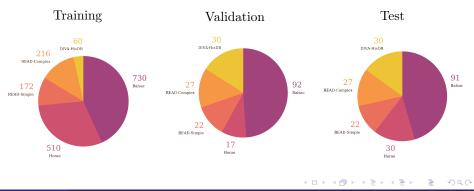
DATASET	Model	IoU	Pr	Rec	F1	TIME ¹
Balsac	dhSegment	73.78	92.07	78.76	84.81	66.3
Daisae	Doc-UFCN	83.79	94.80	87.86	91.11	9.2
TT	dhSegment	65.22	71.70	89.29	82.32	18.8
Horae	Doc-UFCN	63.95	78.38	80.45	84.93	2.3
	dhSegment	64.55	85.04	71.85	77.25	8.4^{2}
READ-Simple	Doc-UFCN	64.03	81.76	75.60	76.66	1.0^{2}
	dhSegment	52.91	79.28	59.16	69.27	10.6^{2}
READ-Complex	Doc-UFCN	54.40	83.62	61.97	73.16	1.3^{2}
DIVA II:-DD	dhSegment	74.24	92.41	79.10	85.19	N/A
DIVA-HisDB	Doc-UFCN	75.71	92.14	80.88	86.09	N/A

	dhSegment	Doc-UFCN
NUMBER OF	32.8M(9.36M)	4 1M
PARAMETERS	52.81v1(9.301v1)	4.1111

 $^1\mathrm{Prediction}$ time (GPU GeForce RTX 2070 8G) in days to analyse the whole corpus.

²Estimation based on the manuscripts sizes without *BHIC* and *Unibas*. $(\bigcirc) \land () \land (\bigcirc) \land () \land ($

M. Boillet


Multiple document datasets pre-training improves text line detection with DNN -7/11

Context 000 Model and data 00 Comparison with state-of-the-art 0000

Conclusion 00

Split of the Multiple document dataset

Does pre-training on document images improve the performances?

	C
	00

Comparison with dhSegment: impact of pre-training

Data	Model	IoU	Pr	Rec	F1
	dhSegment	73.78	92.07	78.76	84.81
Balsac	dhSegment PT	74.02	91.89	79.09	84.95
Dalsac	Doc-UFCN	83.79	94.80	87.86	91.11
	Doc-UFCN PT	84.87	94.25	89.49	91.75
	dhSegment	65.22	71.70	89.29	82.32
Horae	dhSegment PT	60.69	80.94	73.65	81.99
погае	Doc-UFCN	63.95	78.38	80.45	84.93
	Doc-UFCN PT	68.81	80.31	84.80	88.62
	dhSegment	64.55	85.04	71.85	77.25
READ-Simple	dhSegment PT	65.07	88.34	71.56	80.72
READ-Simple	Doc-UFCN	64.03	81.76	75.60	76.66
	Doc-UFCN PT	68.14	83.19	78.05	79.45
	dhSegment	52.91	79.28	59.16	69.27
READ-Complex	dhSegment PT	53.34	85.51	57.80	68.47
READ-Complex	Doc-UFCN	54.40	83.62	61.97	73.16
	Doc-UFCN PT	60.28	81.03	68.17	78.30
	dhSegment	74.24	92.41	79.10	85.19
DIVA-HisDB	dhSegment PT	73.00	91.56	78.28	84.32
DIVA-HISDD	Doc-UFCN	75.71	92.14	80.88	86.09
	Doc-UFCN PT	74.72	89.43	82.20	85.44

M. Boillet

Multiple document datasets pre-training improves text line detection with DNN

Context	Model and data	Comparison with state-of-the-art $000 \bullet$	Conclusion
000	00		00
Conclusi	on		

Does pre-training on document images improve the performances? YES

Intersection-over-Union:

- $\checkmark~+5$ percentage points on Horae and READ-Complex;
- \checkmark +4 percentage points on READ-Simple;
- \approx Similar performances on Balsac;
- ✗ −1 percentage point on DIVA-HisDB.

Our results are overall better than dhSegment ones (except for the precision metric).

		Comparison with state-of-the-art 0000	Conclusion
Conclus	ion		

We designed a model:

- ► Lighter than dhSegment;
- Giving on average better results;
- ▶ Having a reduced prediction time: up to 8 times faster.

+ We have shown that pre-training on various historical documents can improve the performances.

Future work:

- ▶ Test our architecture on other tasks than text line detection;
- Build an historical model trained on a large dataset of diverse historical documents.

		$\begin{array}{c} \text{Comparison with state-of-the-art} \\ \text{0000} \end{array}$	$\underset{\circ \bullet}{\text{Conclusion}}$
Conclus	ion		

Thanks for your attention!

Questions?

M. Boillet

Multiple document datasets pre-training improves text line detection with DNN 11

		Comparison with state-of-the-art		
Bibliography				
[Oliveira2018]	Sofia Ares Oliveira, Benoit Seguin, and Frederic Kaplan. "dhSegment: A generic deep-learning approach for document segmentation". In: Frontiers in Handwriting Recognition (ICFHR), 2018 16th International Conference on. IEEE. 2018, pp. 7–12			
[Yang2017]	Xiao Yang et al. "Learning to Extract Semantic Structure from Documents Using Multimodal Fully Convolutional Neural Network". In: vol. abs/1706.02337. 2017. arXiv: 1706.02337. URL: http://arxiv.org/abs/1706.02337			
[Boillet2019]	Proceedings of the 5th and Processing. HIP '19	ORAE: An Annotated Dataset of Books of Ho International Workshop on Historical Docu 9. Sydney, NSW, Australia: Association for C ISBN: 9781450376686. DOI: 10.1145/3352631.335 3352631.3352633	ument Imaging Computing	
[Grüning2017]	Baseline Detection in Ar	EAD-BAD: A New Dataset and Evaluation Sc chival Documents". In: CoRR abs/1705.0331 http://arxiv.org/abs/1705.03311		
[Simistira2016]	Medieval Manuscripts".	HisDB: A Precisely Annotated Large Dataset In: 2016 15th International Conference on In (ICFHR). Oct. 2016, pp. 471–476. DOI:		

M. Boillet Multiple document datasets pre-training improves text line detection with DNN 11 / 11

イロト イヨト イヨト イヨト

2