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Introduction

Consider the following empirical risk minimization (ERM) problem

min
w∈Rd

{
F (w) :=

1

n

n∑
i=1

fi (w)

}
(1)

I It finds many applications in machine learning and pattern
recognition;

I fi (w) = `(h(xi ;w), yi ) where (xi , yi ) is the i-th training example;
I h is the decision function parameterized by w;
I ` is the loss function.

I SGD plays a central role in solving optimization problem (1):

wk+1 = wk − ηk∇fik (wk), (2)



Adaptive Importance Sampling

To control the variance of the stochastic gradient, SGD with adaptive
importance sampling is introduced:

wk+1 = wk −
ηk
npkik
∇fik (wk), (3)

where pk := (pk1 , p
k
2 , . . . , p

k
n )> is the importance sampling distribution.

A natural idea of choosing distribution pk is to minimize the variance

min
pk

Var

[
1

npki
∇fi (wk)

]
s.t.

n∑
j=1

pkj = 1, pki ≥ 0, ∀i ∈ {1, . . . , n}. (4)

Problem (4) has a closed-form optimal solution, which is

(pki )∗ =
‖∇fi (wk)‖2∑n
j=1 ‖∇fj(wk)‖2

, ∀i ∈ {1, . . . , n}. (5)

Question: How to compute the optimal sampling distribution?
Key Idea: Using the most recently evaluated gradient norms
‖∇fi (wk′)‖2 to approximate ‖∇fi (wk)‖2.



SGD-AIS Algorithm

Algorithm 1 SGD-AIS

1: Input: step sizes {ηk}, weights αk ∈ [α, α] ⊂ (0, 1) for all k ∈ N.
2: Initialize: w1, πi = 1 for all i ∈ {1, . . . , n}
3: for k = 1, , 2 . . . do
4: Update the sampling probabilities for all i ∈ {1, . . . , n}

pi = αk
πi∑n
j=1 πj

+ (1− αk)
1

n
(6)

5: Randomly pick ik ∈ [n] based on distribution p
6: Compute stochastic gradient gk = 1

npik
∇fik (wk)

7: Set πik = ‖∇fik (wk)‖2
8: Set wk+1 = wk − ηkgk
9: end for

Complexity: By resorting to a binary tree data structure, only additional
O(log n) per-iteration cost is needed to implement the adaptive sampling.



SGDm-AIS and ADAM-AIS

Applying AIS strategy to SGD with momentum, we just need gk to be

gk = θgk−1 + (1− θ)
1

npkik
∇fik (wk). (7)

Applying AIS strategy to ADAM, we just need gk to be

gk =
m̂k√
ĥk + ε

, (8)

where

m̂k =

(
θ1mk−1 + (1− θ1)

1

npkik
gk

)/
(1− θk1 ), (9)

and

ĥk =

(
θ2hk−1 + (1− θ2)

1

npkik
g2
k

)/
(1− θk2 ). (10)



Theoretical Results

Theorem

Under some mild assumptions, the sequence {wk} generated by SGD-AIS
with a fixed stepsize ηk = η for all k ∈ N satisfying

E[F (wk)− F ∗] ≤ηL(1− γ)G 2

4σ
+ (1− 2ησ)k−1 (F (w1)− F ∗)

k→∞−−−→ηL(1− γ)G 2

4σ
.

(11)

I Compared with vanilla SGD, the convergence bounds of SGD-AIS
are improved by a factor of 1− γ < 1;

I Similar improvement still holds if we choose diminishing stepsize;

I We also provide more convergence analysis under the nonconvex
settings.



SGD for Logistic Regression and SVM

We implement three algorithms, which are SGD-AIS, SGD with uniform
sampling (SGD-US), SGD with Lipschitz-based importance sampling
(SGD-LIS) for performance comparison.



SGDm and ADAM for SVM

We conduct experiments on SVM with squared hinge loss to evaluate the
performance of SGDm-AIS and ADAM-AIS.



SGDm and ADAM for Neural Networks

We further conduct simulation on MLP, CNN and LeNet-5, and use two
common benchmark datasets, namely MNIST and CIFAR-10.

Figure: Column 1-3: MLP (MNIST), LeNet-5 (MNIST), CNN (Cifar-10); Row
1: SGD-US v.s. SGD-AIS; Row 2: ADAM-US v.s. ADAM-AIS
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