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Introduction Manga Characeter Recognition

Manga Characeter Recognition

Manga character recognition is a key technology for manga character
retrieval and verification.

Manga character images have a long-tailed distribution and large quality
variations.

Training models with cross-entropy softmax loss on such imbalanced
data would introduce biases.
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Introduction Data Imbalance

Data Imbalance

(a) (b)

Figure: (a) The distribution of dataset sample quantity per class and the
distribution of e7·(weight norm) per class. One can see that weight norm is
exponentially correlated with the number of samples per class. (b) Illustration
of the imbalance of sample quality. This imbalance is caused by the sample
scale, pose, sharpness, and fineness.
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Introduction Dual Loss

Dual Loss

We propose a novel dual loss which is the sum of two losses: dual ring
loss and dual adaptive re-weighting loss

The dual ring loss forces the deep model to learn with a similar norm for
all feature vectors and class weight vectors respectively.

The dual adaptive re-weighting loss assigns weights to softmax loss
according to the inverse of the feature norm and class weight norm.

These two losses can reinforce each other for more balanced distributions
of feature and class weight norm.
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Method Cross-Entropy Softmax Loss

Cross-Entropy Softmax Loss

Softmax loss, also known as cross-entropy softmax loss, is fundamental in the
recognition task and formulated as:

pi,j =
eW

T
j xi+bj∑M

k=1 e
WT

k xi+bk
, (1)

Ls = − 1

N

N∑
i=1

log pi,yi . (2)
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Method Dual Ring Loss (DRL)

Dual Ring Loss (DRL)

To alleviate the imbalance of feature and weight norm, we combine the ring
loss [1] and the under-represented term [2].

Ldr =
λ1
2N

N∑
i=1

(‖xi‖2 − α )
2

+
λ2
2M

M∑
i=1

(‖Wi‖2 − β )
2
, (3)

L = Ls + Ldr. (4)
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Method Dual Adaptive Re-Weighting Loss (DARL)

Dual Adaptive Re-Weighting Loss (DARL)

To further improve the performance of the deep model on the imbalanced
data, we propose the dual adaptive re-weighting loss. It assigns different
weights to the softmax loss of different samples or different categories.

ww = 1− λ3
‖Wyi

‖2 −min ‖Wj‖2
max ‖Wj‖2 −min ‖Wj‖2

, j ∈ [1,M ], (5)

wx = 1− λ4
‖xi‖2 −min ‖xj‖2

max ‖xj‖2 −min ‖xj‖2
, j ∈ [1, N ], (6)

Ldar = − 1

N

N∑
i=1

wwwxLs(xi). (7)
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Method Dual Loss

Dual Loss

The above two losses are both forcing the norm of the learned feature or the
norm of class weight to be similar. Therefore, they can reinforce the learning
of each other. We combine them to form the dual loss Ld and use it to
supervise the training process of the deep model, as given by Equation (8).

Ld = Ldr + Ldar. (8)
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Experiments Datasets and Settings

Datasets and Settings

Datasets

Manga109 [3]: the biggest manga dataset with character identity
annotations
109 manga volumes; 29845 image pages;
80 volumes for training; 29 volumes for testing;[4]
Character Retrieval Test: 28138 head images as database; 2000
head images as queries;
Character Verification Test: 6000 head image pairs.

Settings

For retrieval, rank-1, rank-5 matching accuracy, and mean Average
Precision (mAP).
For verification, the verification accuracy using 10-fold
cross-validation.
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Experiments Results

Results

Table: Experimental results using Manga109.

Methods
Retrieval Verification

rank-1(%) rank-5(%) mAP(%) Accuracy(%)
Softmax 66.60 81.95 35.72 87.00
L2-Constrained 64.45 81.35 35.10 87.70
NormFace 64.00 80.25 33.66 87.90
CosFace 64.25 79.35 33.22 86.80
ArcFace 60.45 76.65 30.30 87.00
Am Softmax 64.50 80.25 33.14 87.00
Range Loss 68.70 82.50 36.01 86.20
CB Loss 68.30 83.50 36.10 87.30
Focal Loss 67.85 83.35 36.70 87.50
CB Focal 68.65 83.25 36.58 87.60
Softmax + RL 68.70 83.50 37.03 87.40
Softmax + UP 68.80 83.00 36.23 87.80
Softmax + DRL 69.65 83.55 37.26 87.90
DARL 69.00 83.80 37.66 87.80
Dual Loss 70.55 84.30 38.88 88.50
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Experiments Image Classification

Image Classification: CIFAR-10

Table: Test set error rate (%) of Long-Tailed CIFAR-10.

Dataset Long-Tailed CIFAR-10

Imbalance 200 100 50 20 10

Softmax 34.32 29.64 25.19 17.77 13.61
Sigmoid 34.51 29.55 23.84 16.40 12.97
Focal (γ = 0.5) 36.00 29.77 23.28 17.11 13.19
Focal (γ = 1.0) 34.71 29.62 23.29 17.24 13.34
Focal (γ = 2.0) 35.12 30.41 23.48 16.77 13.68
CB Focal 31.11 25.43 20.73 15.64 12.51

Dual Loss 30.32 24.10 19.28 15.16 12.51
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Conclusions

Conclusions

We propose the dual loss with two novel losses for manga character
recognition with imbalanced training data.

The dual ring loss adds regularization to the deep model and forces the
model to learn a similarity norm for both feature and class weight
vectors.

The dual adaptive re-weighting loss assigns weights to the softmax loss
term according to the norm of feature and class weight vectors.

Experiment results on Manga109 dataset demonstrate that the
effectiveness of dual loss.
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