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Parallel Network to Learn Novelty from the Known

I What is the Novelty Detection ?

Known

Recognize the unseen classes, or technically, those classes never appearing during training.
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| The Challenge
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The limit of classic classification network:
Cannot discriminate novel samples resembling
training classes.
Novelty
(test)

— misclassify - —> correct classify
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I Key Idea
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A known or pseudo-novel [ real novel (7 classification space

Construct subtasks of pseudo-novelty detection
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| Pipeline

Closed Set for Training l Open Set for Testing
known real novel
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Closed Set: lack real novel samples in training
Open Set: meet real novel samples in testing
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I Closed Set for Training

Generate Pseudo-novel

"""""" Datasplittng
Training known - Training pseudo-novel | Generate Pseudo-novel Sub-tasks
: th "N;’ | « Use only the training set to create sub-tasks of
— — | pseudo-novelty detection.
i - | « All training classes share equal possibility of being
= N pseudo-novel during training.

________________________________

(" Feature Extractor )| [ Paralllealycelrasssifier ) Train PN Within Closed Set
E— « “Parallel” denotes multiple branches of co-working
> Encoder |:| 7 — FC classifiers.
. m « The classes acting as “pseudo-novel” to train each
. J ) FC are unoverlapped.
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I Open Set for Testing

known . novel _ novel ‘
novelty-dim novelty-dim (similar to known) novelty-dim

of branches e g il of branches of branches

Samples within different classes shall have different output distributions.

Output 1-Novel
E— - low
— score
[ ||

Multiplicative Ensemble
- I - Multiply the novel dimensions in all FCs.
—
1 max

- i
Score
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I Open Set for Testing

known . novel : novel
novelty-dim novelty-dim (similar to known

) novelty-dim
of branches e g o of branches

of branches

KL-Divergence based Ensemble

* Measure the Kullback-Leibler (KL)
divergence between the ideal output of
known classes and any test sample.

1

the ideal output . I

o ideal™ I 7
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of known q
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I Comparison & Ablation Study

Stanford Caltech- Founder-
Method Dogs )56 Type200 Mean
FT(baseline) 0.766 0.827 0.841 0.811 Features Classifier AUC imp.
One-class SVM 0.542 0.576 0.627 0.582 ) ]
KNEST 0.649 0.743 0.870 0.754 baseline baseline 0.689 +0.000
Local KNFST 0.652 0.712 0.673 0.679 ours baseline 0.709 +0.020
OpenMax 0.776 0.831 0.852 0.820 :
FT(c+C) 0.780 0.848 0.754 0.794 baseline ours 0.725 +0.036
Deep Novelty  0.825 0.869 0.893 0.862 ours ours 0.829 +0.140
Ours (ME) 0.833 0.882 0.871 0.862
Ours (KLD) 0.829 0.873 0.901 0.868

State-of-the-art and robust on 3 kinds of public datasets.
Without additional data, PN still seemed to have mined the concept of novelty.
Feature and classifier benefit from each other.
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I Analysis Study

Papillon Feature Output Output of Branches in Parallel Network
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Compared to Baseline, out PN

* builds larger margin between visually similar classes;

» shows better discriminative power in both feature and classifier output.

» shows great difference between the integral distributions of known and real novel.
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I Summary

Propose end-to-end PN for novelty detection.

1. PN learns a more compact and discriminative feature or output space.
2. PN learns the concept of “novelty” with only training known classes,

I.e., no novel samples.

3. We designed careful experiments to validate our proposition.
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THANKS FOR YOUR ATTENTION
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