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Continual Learning

e Human intelligence allows us to learn new tasks all the time, while
remembering (almost) everything we learned thus far.

e On the contrary, if a Neural Network is trained on a stream of data with novel
tasks/classes emerging later on, focusing on the current examples deteriorates its
performance on old data (Catastrophic Forgetting) [7].

e Continual Learning (CL) studies how to train a neural network from a stream of
non i.i.d. samples, relieving catastrophic forgetting.



Problem Formulation

e Let a classification problem be split in T tasks;

e we train a classifier £, with parameters 6, on one task at a time in sequence;

e Vt € {1,..., T}, we train on input samples x and labels y from an i.i.d.
distribution Dy;

e goal: at any given point in training, correctly classify examples from any of the
observed tasks up to the current one t.

te
argmin Z Le, where Ly £ B, )up, [((y, fp(x))].
o =

e Data from previous tasks are not available: £; _; must be optimized without D;
fort € {1,...,tc —1}.



Baseline

Recalling the CL objective:

te
argmin Z Le, where Ly £ B, )p, [((y, fp(x))]
o =

Let B be the memory buffer, ER approximates it as:

El = E(Xv}’)"‘Dtc [E(y7 fQ(X))] + IE)(x,y)ml’)’ [E(y? fg(X))] .

To populate B, we use the reservoir sampling algorithm [12] (as done by Riemer et
al. [10]). It works online and gives all input data the same probability of being sampled.



ER: pros and cons

Due to its simplicity, ER is an ideal starting point to develop a strong Class-IL method.
However, it is affected by some issues:

1. ER repeatedly optimizes a relatively small buffer: possible overfitting problem;

2. Incrementally learning a sequence of classes implicitly biases the network towards
newer tasks [13];

3. Usually, the memory buffer is populated through random sampling, to obtain an
i.i.d. distribution [10, 4]. This is not always ideal (e.g.: if the buffer is small,
entire classes could be left out).

We mitigate these issues by applying some tricks.



Tricks

® Independent Buffer Augmentation (IBA):
when data augmentation is used on the input
stream, we store not augmented input items
in B and augment them independently when
drawn for replay.

Reduces overfitting.

1&

Memory
Buffer

al

train
Xau,

store

Xau Xau
rehearse

Memory
Buffer

store [ m—
3

rehearse



Tricks

@ Loss-Aware Reservoir Sampling (LARS):

We alter reservoir to retain the most meaningful examples: replace each item in the
buffer with a probability that depends on its corresponding training loss. Training loss
values are kept in the buffer and updated when the item is drawn for replay.

LARS _Prob

This could be compared to GSS [1]. However, our loss score is promptly available at
forward passes, whereas GSS uses cosine similarity between pairs of gradients, which
need to be computed from scratch (slow).



Tricks

@ Balanced Reservoir Sampling (BRS):
Given an input stream with C distinct classes, the probability of the reservoir leaving
at least one of them out of B is critical when the buffer is small:

B
P:(l—%) HIBRC L 3679

Cooo €

Therefore, we propose a simple modification to reservoir, requiring that inserted

samples replace a random item from the most represented class.

Reservoir BRS




Tricks

@ Bias Correction (BiC):

As done in [13], we add a bias correction layer to the model which compensates the
k™ output logit o, with learned parameters «, 3 as follows:

a- ok + B if k was trained in the last task
dk =
o otherwise

BiC is trained at the end of each task on B.

Balances bias among different classes.



Tricks

® Exponential Learning Rate Decay (EIrD):

“The best way to preserve previous knowledge is not to learn anything new”.
Inspired EWC [5] and other regularization methods, we progressively slow down
learning in later tasks. We set the learning rate for the j™ seen example to:

Iy = Iry - A",

where Iry is the initial learning rate, Ny is the number of input examples seen so far
and v is a hyper-parameter chosen s.t. Ir; = Ir - 1/6.



Results

The incremental application of the proposed tricks enhance the final performance.
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Results

Here we show a direct comparison with other SOTA Rehearsal Methods.

Methods Split Fashion-MNIST Split CIFAR-10 Split CIFAR-100 Split CORe-50
SGD 20.11 19.62 8.54 8.89

Joint Training 84.47 92.13 70.66 49.51
Memory Buffer Size By Bsoo  Biooo  Baoo  Bsoo  Biooo  Baoo  Bsoo  Biooo  Bo  Bsoo  Biooo
A-GEM [3] 49.73 49.47 5098 19.90 20.35 19.81 9.17 9.23 9.12 9.33 9.42 8.96
GEM [6] 69.46 75.91 79.62 28.14 3469 36.68 9.18 14.12 17.88 - - -
HAL [2] 7259 7759 80.79 25.92 27.99 29.10 7.63 9.66 10.43 1153 1240 8.53
iCaRL [9] 75.46 77.54 78.13 4126 41.34 42.03 20.73 2474 2552 8.01 7.23 8.05
ER [8] 7254 79.02 81.39 24.06 27.06 31.38 9.66 11.50 12.36 19.48 28.54 32.66
ER+T (ours) 76.07 80.11 82.46 59.18 62.60 70.99 21.26 24.90 36.05 25.63 33.33 37.44
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Applicability to other Methods

IBA can be easily applied to rehearsal methods.

g B Task 1

. . 8 0.6 = Task 2
BiC and ELrD are not specific to them: we can 2 m—Task 3
. . : 0.4 w Task 4

apply them to two regularization methods E W Task 5

(online EWC (oEWC) [11] and SI [14]).

oEWC oEWC oEWC Joint
+BiC  +CBiC Training

They show a decreasing bias w.r.t. previous

tasks, so we modify BiC and apply a separate S-F-MNIST _ SI[14] oEWC [11]

additive offset to logits from each task (Com- No trick 19.91 20.04

plete Bias Correction (CBiC)). ?;C g:?; iggé
| . .

CBiC+EID 35.51 43.85

gk = ox+3: where t is the task containing class k
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