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Continual Learning

• Human intelligence allows us to learn new tasks all the time, while

remembering (almost) everything we learned thus far.

• On the contrary, if a Neural Network is trained on a stream of data with novel

tasks/classes emerging later on, focusing on the current examples deteriorates its

performance on old data (Catastrophic Forgetting) [7].

• Continual Learning (CL) studies how to train a neural network from a stream of

non i.i.d. samples, relieving catastrophic forgetting.
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Problem Formulation

• Let a classification problem be split in T tasks;

• we train a classifier f , with parameters θ, on one task at a time in sequence;

• ∀t ∈ {1, ...,T}, we train on input samples x and labels y from an i.i.d.

distribution Dt ;

• goal: at any given point in training, correctly classify examples from any of the

observed tasks up to the current one tc

argmin
θ

tc∑
t=1

Lt , where Lt , E(x ,y)∼Dt

[
`(y , fθ(x))

]
.

• Data from previous tasks are not available: L1...tc must be optimized without Dt

for t ∈ {1, . . . , tc − 1}.
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Baseline

Recalling the CL objective:

argmin
θ

tc∑
t=1

Lt , where Lt , E(x ,y)∼Dt

[
`(y , fθ(x))

]
.

Let B be the memory buffer, ER approximates it as:

L′ = E(x ,y)∼Dtc

[
`(y , fθ(x))

]
+ E(x ,y)∼B

[
`(y , fθ(x))

]
.

To populate B, we use the reservoir sampling algorithm [12] (as done by Riemer et

al. [10]). It works online and gives all input data the same probability of being sampled.
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ER: pros and cons

Due to its simplicity, ER is an ideal starting point to develop a strong Class-IL method.

However, it is affected by some issues:

1. ER repeatedly optimizes a relatively small buffer: possible overfitting problem;

2. Incrementally learning a sequence of classes implicitly biases the network towards

newer tasks [13];

3. Usually, the memory buffer is populated through random sampling, to obtain an

i.i.d. distribution [10, 4]. This is not always ideal (e.g.: if the buffer is small,

entire classes could be left out).

We mitigate these issues by applying some tricks.
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Tricks

À Independent Buffer Augmentation (IBA):

when data augmentation is used on the input

stream, we store not augmented input items

in B and augment them independently when

drawn for replay.

Reduces overfitting.
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Tricks

Á Loss-Aware Reservoir Sampling (LARS):

We alter reservoir to retain the most meaningful examples: replace each item in the

buffer with a probability that depends on its corresponding training loss. Training loss

values are kept in the buffer and updated when the item is drawn for replay.
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This could be compared to GSS [1]. However, our loss score is promptly available at

forward passes, whereas GSS uses cosine similarity between pairs of gradients, which

need to be computed from scratch (slow).
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Tricks

Â Balanced Reservoir Sampling (BRS):

Given an input stream with C distinct classes, the probability of the reservoir leaving

at least one of them out of B is critical when the buffer is small:

P =

(
1− 1

C

)|B|
if |B|≈C−−−−−→
C→∞

1

e
≈ 36.7%

Therefore, we propose a simple modification to reservoir, requiring that inserted

samples replace a random item from the most represented class.
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Tricks

Ã Bias Correction (BiC):

As done in [13], we add a bias correction layer to the model which compensates the

kth output logit ok with learned parameters α, β as follows:

qk =

α · ok + β if k was trained in the last task

ok otherwise

BiC is trained at the end of each task on B.

Balances bias among different classes.
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Tricks

Ä Exponential Learning Rate Decay (ElrD):

“The best way to preserve previous knowledge is not to learn anything new”.

Inspired EWC [5] and other regularization methods, we progressively slow down

learning in later tasks. We set the learning rate for the j th seen example to:

lrj = lr0 · γNex ,

where lr0 is the initial learning rate, Nex is the number of input examples seen so far

and γ is a hyper-parameter chosen s.t. lrj ≈ lr0 · 1/6.
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Results

The incremental application of the proposed tricks enhance the final performance.
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Results

Here we show a direct comparison with other SOTA Rehearsal Methods.

Methods Split Fashion-MNIST Split CIFAR-10 Split CIFAR-100 Split CORe-50

SGD 20.11 19.62 8.54 8.89

Joint Training 84.47 92.13 70.66 49.51

Memory Buffer Size B200 B500 B1000 B200 B500 B1000 B200 B500 B1000 B200 B500 B1000

A-GEM [3] 49.73 49.47 50.98 19.90 20.35 19.81 9.17 9.23 9.12 9.33 9.42 8.96

GEM [6] 69.46 75.91 79.62 28.14 34.69 36.68 9.18 14.12 17.88 – – –

HAL [2] 72.59 77.59 80.79 25.92 27.99 29.10 7.63 9.66 10.43 11.53 12.40 8.53

iCaRL [9] 75.46 77.54 78.13 41.26 41.34 42.03 20.73 24.74 25.52 8.01 7.23 8.05

ER [8] 72.54 79.02 81.39 24.06 27.06 31.38 9.66 11.50 12.36 19.48 28.54 32.66

ER+T (ours) 76.07 80.11 82.46 59.18 62.60 70.99 21.26 24.90 36.05 25.63 33.33 37.44
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Applicability to other Methods

IBA can be easily applied to rehearsal methods.

BiC and ELrD are not specific to them: we can

apply them to two regularization methods

(online EWC (oEWC) [11] and SI [14]).

They show a decreasing bias w.r.t. previous

tasks, so we modify BiC and apply a separate

additive offset to logits from each task (Com-

plete Bias Correction (CBiC)).

qk = ok+βt where t is the task containing class k
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