Modulation Pattern detection Using Complex Convolutions in Deep Learning

25th International Conference on Pattern Recognition (ICPR 2020)

Jakob Krzyston^{1,3}, Rajib Bhattacharjea², Andrew Stark³

¹Georgia Institute of Technology, ²DeepSig.io, ³Georgia Tech Research Institute

Georgia ∦ Research Tech ∦ Institute

Introduction

- Transceivers used for telecommunications transmit and receive sequences of data that are conventionally thought of as representing complex numbers
 - Components are known as I and Q channels $(a + jb \rightarrow I + jQ)$
- Predetermined modulation patterns provide unique structure that can be decoded by the receiver to reproduce the intended message
- There are sources of noise and distortion in wireless channels, leading to errors in decoding the data, and making simple modulation classification particularly challenging

I/Q Modulation Overview

- I/Q signals are represented in Euler Form •
 - $A(t)e^{j\phi(t)} = A(t)\cos(\phi(t)) + jA(t)\sin(\phi(t))$
 - A(t): real-valued time-dependent magnitude
 - *j*: imaginary unit, $\sqrt{-1}$
 - $\phi(t)$: real-valued time-dependent angle of rotation
 - I Channel $\rightarrow A(t) \cos(\phi(t))$
 - Q Channel $\rightarrow A(t) \sin(\phi(t))$
- I/Q channel modulations can occur independently or jointly

Fig. 1. (a) Example I/Q signal, $e^{j\phi(t)}$, shown in three dimensional space. (b) A two dimensional view of the example I/Q signal shown in 1a. The blue plot shows the I channel over time, $\cos(\phi(t))$, and the orange plot shows the Q channel over time, $\sin(\phi(t))$. In this report, this visualization will be used to display I and Q channels of a given I/Q sample.

Geordia **lech 🛛 Institute**

Deep Learning for Modulation Classification

- Seminal work: O'Shea et al., 2016
- Since then, researchers have rushed to apply the latest architectures to this space
 - LSTM
 - CLDNN
 - ResNet
- Krzyston et al., 2020, demonstrated simple method to compute complex-valued convolutions using real-valued CNN's
- This work focused on simple CNNs to investigate the benefits of using complex convolutions in various train/test conditions (more on this later)

Complex Numbers in Deep Learning

- Arjovsky et al., 2016 suggest the use of complex numbers in deep learning for training stability
- Trabelsi et al., 2017 devised a method to extract complex-valued features from realvalued inputs
- Recently, Chakraborty et al., 2019 detailed a method to compute complex-valued convolutions via weighted Fréchet mean on a Lie Group
 - Necessitated special convolutional layer and activation function

Computing Complex Convolutions (Krzyston et al., 2020)

- Input: $Z_n = I_n + jQ_n$, $I_n, Q_n \in \mathbb{R}$
- Filter: $h_m = h'_m + jh''_m$, $h'_m, h''_m \in \mathbb{R}$
- Convolution via Deep Learning yields X_{DL}

• Linear combination corrects this $X = X_{DL}$

$$\begin{bmatrix} 1 & 0 \\ 0 & 1 \\ -1 & 0 \end{bmatrix} \longrightarrow X = \begin{bmatrix} I * h' - I \\ I & I' \end{bmatrix}$$

 Q_1

 Q_2

 Q_3

 Q_N

 I_1

 I_2

 I_3

 I_N

 $-Q * h'' \mid I * h'' + Q * h'$

Deep Learning Architectures

- CNN2 (O'Shea et al., 2016)
 - Two convolutional layers
 - All convolutional filters are 1D
 - 256 node dense layer
- Krzyston 2020 (Krzyston et al., 2020)
 - One complex convolutional layer
 - Convolutional filter is 2D
 - One traditional convolutional layer
 - 256 node dense layer

7

- CNN2-257 (Krzyston et al., 2020)
 - CNN2 with 257 node dense layer
 - More parameters than Krzyston 2020

Georgia Research Tech Institute

I/Q Modulation Classification Task & Experimental Design

- Dataset
 - RadioML 2016.10A open source dataset
 - 11 modulation classes
 - SNR range (in dB): [-20,18], steps of 2 dB -
 - Numerous types of noise -
 - 1000 samples per modulation pattern per dB SNR -

Train/Test Paradigms

Train dB SNR	Te
[-20,18]	
[-20,-2]	
[0,18]	

- Training split 50/50 -
- Each experiment repeated five times -

est dB SNR [-20,18] [0,18] [-20,-2]

Results: Classification

Fig. 4. Classification accuracy plots as a function of SNR, with the addition of standard deviation bars over the five trials, of (a) the experiment performed in [7], and (b) Experiment 1 the networks were trained on [-20, -2] db SNR data and tested on [0, 20] db SNR data. Figure 4(c) displays the average accuracy, over all modulations and SNRs, and standard deviation for each experiment, along with p-values comparing the performances amongst the architectures, if statistically significant. The unpaired student t-test was used to compute the p-values.

Georgia Research lech 🛛 Institute

Results: 'One-Hot' Activations

Fig. 8. Computed maximized input images for each architecture in (a) experiment performed in [7], (b) Experiment 1, and (c) Experiment 2. These images result in one-hot classification by the respective architecture, for the respective modulation pattern. Additionally, a sample from each modulation at the highest SNR included in the training set of that train/test paradigm is included for visual comparison.

Georgia Research Tech Institute

Conclusion

- We demonstrate the ability to compute complex convolutions in CNNs outperforms traditional CNNs with statistical significance in two of three train/test paradigms
- Complex convolutions are able to capture more useful content in a complex signal than traditional deep learning convolutions

• Email: jakobk@gatech.edu

