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Introduction

• Transceivers used for telecommunications transmit and receive sequences of data 
that are conventionally thought of as representing complex numbers

- Components are known as I and Q channels (𝑎 + 𝑗𝑏 → 𝐼 + 𝑗𝑄)

• Predetermined modulation patterns provide unique structure that can be decoded 
by the receiver to reproduce the intended message

• There are sources of noise and distortion in wireless channels, leading to errors in 
decoding the data, and making simple modulation classification particularly 
challenging
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• I/Q signals are represented in Euler Form

- 𝐴 𝑡 𝑒𝑗𝜙 𝑡 = 𝐴 𝑡 cos 𝜙 𝑡 + 𝑗𝐴 𝑡 sin 𝜙 𝑡

• 𝐴 𝑡 : real-valued time-dependent magnitude

• 𝑗: imaginary unit, −1

• 𝜙 𝑡 : real-valued time-dependent angle of rotation

- I Channel  𝐴 𝑡 cos 𝜙 𝑡

- Q Channel  𝐴 𝑡 sin 𝜙 𝑡

• I/Q channel modulations can occur 
independently or jointly

I/Q Modulation Overview
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Deep Learning for Modulation Classification

• Seminal work: O’Shea et al., 2016

• Since then, researchers have rushed to apply the latest architectures to this space

- LSTM

- CLDNN

- ResNet

• Krzyston et al., 2020, demonstrated simple method to compute complex-valued 
convolutions using real-valued CNN’s

• This work focused on simple CNNs to investigate the benefits of using complex 
convolutions in various train/test conditions (more on this later)
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Complex Numbers in Deep Learning

• Arjovsky et al., 2016 suggest the use of complex numbers in deep learning for 
training stability

• Trabelsi et al., 2017 devised a method to extract complex-valued features from real-
valued inputs

• Recently, Chakraborty et al., 2019 detailed a method to compute complex-valued 
convolutions via weighted Fréchet mean on a Lie Group

- Necessitated special convolutional layer and activation function
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Computing Complex Convolutions (Krzyston et al., 2020)

• Input: 𝑍𝑛 = 𝐼𝑛 + 𝑗𝑄𝑛, 𝐼𝑛, 𝑄𝑛 ∈ ℝ

• Filter: ℎ𝑚 = ℎ𝑚
′ + 𝑗ℎ𝑚

′′ , ℎ𝑚
′ , ℎ𝑚

′′ ∈ ℝ

• Convolution via Deep Learning yields 𝑋𝐷𝐿

• Linear combination corrects this
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• CNN2 (O’Shea et al., 2016)

- Two convolutional layers

- All convolutional filters are 1D

- 256 node dense layer

• Krzyston 2020 (Krzyston et al., 2020)

- One complex convolutional layer

• Convolutional filter is 2D

- One traditional convolutional layer

- 256 node dense layer

• CNN2-257 (Krzyston et al., 2020)

- CNN2 with 257 node dense layer

- More parameters than Krzyston 2020

Deep Learning Architectures
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• Dataset

- RadioML 2016.10A open source dataset

- 11 modulation classes

- SNR range (in dB): [-20,18], steps of 2 dB

- Numerous types of noise

- 1000 samples per modulation pattern per dB SNR

• Train/Test Paradigms

- Training split 50/50

- Each experiment repeated five times

I/Q Modulation Classification Task & Experimental Design

Train dB SNR Test dB SNR

[-20,18] [-20,18]

[-20,-2] [0,18]

[0,18] [-20,-2]
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Results: Classification
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Results: ‘One-Hot’ Activations
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Conclusion

• We demonstrate the ability to compute complex convolutions in CNNs outperforms 
traditional CNNs with statistical significance in two of three train/test paradigms

• Complex convolutions are able to capture more useful content in a complex signal 
than traditional deep learning convolutions

• Email: jakobk@gatech.edu


