UC Irvine

Neural Compression and Filtering for Edge-assisted
Real-time Object Detection in Challenged Networks

Yoshitomo Matsubara Marco Levorato

University of California, Irvine

January 12-15, 2021 @ Milan, ltaly (Virtual)
||III 'CPR EEEEEE 25th International Conference on Pattern Recognition



UC Irvine

Problem Setting
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Bottleneck Injection & Generalized Head Network Distillation

- Introduce “Bottleneck” to pretrained R-CNN object detectors
[:> Reduce size of data to be transferred to edge server
- Generalize head network distillation (Matsubara et al. 2019)

[:> - Learn compressed bottleneck representations while preserving accuracy
- Train head portion only, thus save training time
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Small Bottleneck Representations vs. Detection Performance

Dataset:COCO 2017 Split Computing Edge Computing
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Inference Time Evaluation (Local: Jetson TX2, Edge: Desktop w/ one GPU)

vs. Local Computing vs. Pure Offloading (w/ JPEG compression)
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Filtering out Images with No Obijects of Interest

- Introduce a lightweight “Neural Filter’ (NF) to the head-distilled R-CNN model
- Filter out “empty” images

[:> The downstream pipeline can be skipped (i.e., no offloading) if filtered out
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- Train a NF as a binary classifier on COCO 2017, freezing all the other modules

Q> ROC-AUC: 0.919 for COCO 2017 validation split ;
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Inference Time Evaluation with Neural Filter

Gain w.r.t. Local Computing
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vs. Local Computing vs. Pure Offloading (w/ JPEG compression)
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EH “Is there any objects of interest?”

- Refined our head network distillation technique for object detection tasks

- Introduced a neural filter to filter out “empty” images for efficient inference

Three benchmark models: Faster, Mask and Keypoint R-CNNs on COCO 2017

We are the first to

- Successfully introduce small bottlenecks to the models w/ ~1pt mAP loss

- Discuss split computing w/ bottleneck-injected object detectors

that offers improved latency in challenged network configurations 9
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See you in poster session T3.2!

Yoshitomo Matsubara Marco Levorato

E yoshitom@uci.edu 2 @yoshitomo_cs

Code & Trained models are available at
https://github.com/yoshitomo-matsubara/
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