Self-Selective Context for Interaction Recognition

Mert Kilickaya, Noureldien Hussein, Efstratios Gavves, Arnold Smeulders
QUvA Deep Vision Lab, University of Amsterdam
Netherlands
Email: kilickayamert@gmail.com, {nhussein, egavves, a.w.m.smeulders}@uva.nl

Problem: Human-object interaction recognition

Fig. 1: Human-object interactions come with many contexts that can help in recognition. In the example above, utilizing the body-parts, the deformation, and the surround scene can ease the recognition of <ride, bicycle>. However, background objects like the boats can mislead the recognition. In this paper, we first develop novel contextual features, as well as a context selection scheme Self-Selective Context to rely only on the most discriminative contexts.

Method: Self-Selective Context Module

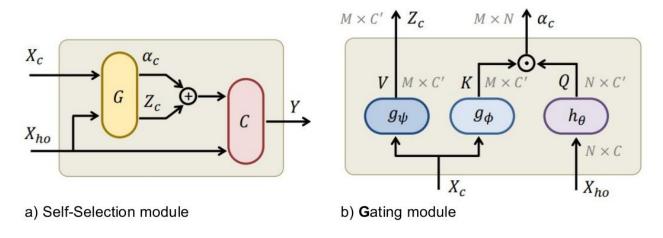


Fig. 2: Overview of our method. On the left, the Self-Selection module. It takes as an input the features \mathbf{X}_{ho} of N human-object pairs in a certain image, and M context features \mathbf{X}_c corresponding to the image. Then, it modulates the context features \mathbf{X}_c using a novel Gating module $G(\cdot)$. The final image-level features are then feed-forwarded to the classifier $C(\cdot)$ to predict the human-object interactions in the image. On the right, the Gating module $G(\cdot)$, inspired by the Self-attention [8]. The main purpose of $G(\cdot)$ is to embed the heterogeneous context features \mathbf{X}_c into a compact representation \mathbf{Z}_c . $G(\cdot)$ predicts the vectors α used for Self-Selection of the embedded context features \mathbf{Z}_c .

Method: Proposed Context Features

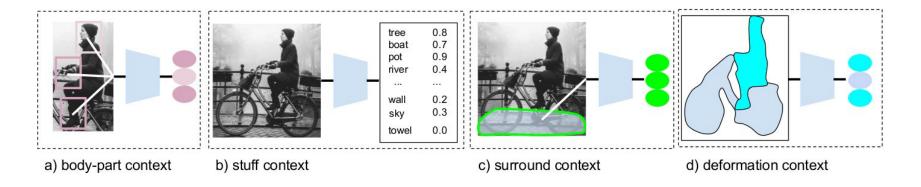


Fig. 3: The context features proposed in this paper. a) Body-part context models the appearance of the human joints, b) Stuff-context models the occurrence of stuff-like regions in the image, c) Surround context models the appearance of local segments around humans, d) Deformation context models the shape of the human-object posture.

Experiments

Datasets: HICO, V-COCO, CINT (ours)

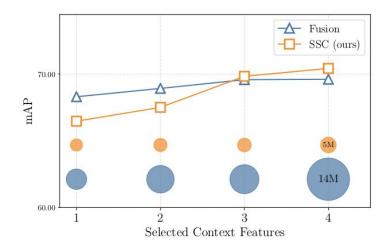
Evaluation: mAP

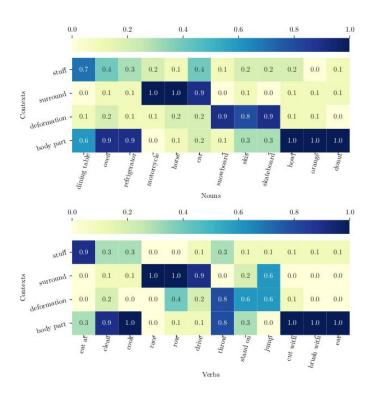
Experiment 1

TABLE I: Self-Selection of The Single Context.

Context Feature	mAP(%)	Improvement $\Delta \uparrow$	
Human-Object (HO)-only	62.50	-	
HO + Body-part context	68.55	6.05	
HO + Stuff context	68.20	5.70	
HO + Surround context	68.44	5.94	
HO + Deformation context	68.30	5.80	

Experiment 2


TABLE II: Self-Selection of The Multiple Contexts.


Method	Dataset		
	HICO	V-COCO	CINT
HO-only	62.50	52.27	45.24
HO + Fusion	69.59	54.74	49.74
HO + SSC (Ours)	70.78	55.00	54.36

Quantitative Analysis

TABLE IV: Contribution of Joint Conditioning.

Condition	Dataset		
	HICO	V-COCO	CINT
context-only	67.77	49.58	49.26
human-object & context	70.78	55.00	54.36

Experiment 3

TABLE V: Combining SSC with the State-of-the-art.

Method	Dataset		
	HICO	V-COCO	CINT
VGG-16 [16]	56.10	46.91	44.83
VGG-16 [16] + SSC	67.59	51.17	49.56
ContFus [5]	63.47	51.36	46.72
ContFus [5] + SSC	65.79	52.24	51.92
PairAtt [7]	65.10	53.62	48.99
PairAtt [7] + SSC	68.29	54.24	51.22
Human-Object	62.50	51.60	47.85
Human-Object + SSC	70.78	55.00	54.36

Qualitative Analysis



Fig. 6: Qualitative examples from CINT dataset for PairAtt [7] and PairAtt+SSC(ours). We provide mAP % on top for both. SSC helps when the context is unexpected (top), however may decrease the result if the context is not visible or too noisy (bottom).

Conclusion

This paper tackled human-object interaction recognition from a single image

We treated the task as a context selection task via Self-Selective Context

Experiments on three benchmarks demonstrate the effectiveness of the technique