

Teacher-Student Training and Triplet Loss for Facial Expression Recognition under Occlusion

Mariana-Iuliana Georgescu^{1, 2}, Radu Tudor Ionescu¹

¹University of Bucharest, Bucharest, Romania, ²Novustech Services, Bucharest, Romania

Motivation

- We focus on the application of facial expression recognition to human-computer interaction in a virtual reality environment
- \succ Our aim is to design a system:
 - to recognize the facial expressions of a user wearing a VR headset
 - to automatically control and adjust the VR environment according to the user's emotions

Related work

Synthetically occluded images [Li et al. ICPR 2018]

analyzes expressions from the eye region [Hickson et al. WACV 2019]

analyzes the mouth region captured with a standard camera [Georgescu et al. ICONIP 2019]

Our method

> Our approach is based on the following steps:

- 1. Fine-tuning a teacher CNN on full faces
- 2. Fine-tuning a student CNN on lower-half faces
- 3. Knowledge distillation

Our method

We consider two knowledge distillation methods to obtain more accurate CNNs based on:

teacher-student training

> triplet loss (novel)

Teacher-student

Teacher-student

Knowledge distillation loss function:

$$\mathcal{L}_{KD'}(\theta_S) = (1 - \lambda)\mathcal{L}(y, N_S) + \lambda\mathcal{L}(N_T^{\tau}, N_S^{\tau})$$

where:

$$N_T^{\tau} = softmax\left(\frac{A_T}{\tau}\right), N_S^{\tau} = softmax\left(\frac{A_S}{\tau}\right)$$

Triplet loss

Triplet loss function for knowledge distillation:

$$\mathcal{L}_{KD''}(\theta_S) = \mathcal{L}(y, N_S) + \lambda \mathcal{L}_{triplet}(\theta_S)$$

where:

$$\mathcal{L}_{triplet}(\theta_S) = \sum_{i=1}^{m} \left[\Delta(E_S(a'_i), E_T(p_i)) - \Delta(E_S(a'_i), E_S(n'_i)) + \alpha \right]_+$$

 $E_T(x)$ and $E_S(x)$ are the embeddings produced by the teacher T and the student S, Δ is the Euclidian distance

Experiments

- Data sets:
 FER+
 AffortN/
 - AffectNet

Data set	#training	#validation	#test
FER+	25045	3191	3137
AffectNet	287651	2000	4000

- CNN architectures
 - VGG-face (pre-trained for face recognition)
 - VGG-f (pre-trained on ImageNet)

Results

Model	Test faces	AffectNet	FER+
Bag-of-visual-words [9]	0	48.30%	80.65%
VGG-13 [6]	\bigcirc	-	84.99%
AlexNet [7]	\bigcirc	58.00%	-
MT-VGG [10]	\bigcirc	54.00%	-
VGG-12 [8]	\bigcirc	58.50%	-
Teacher VGG-f	0	57.37%	85.05%
Teacher VGG-face	\bigcirc	59.03%	84.79%
Teacher VGG-f	\bigcirc	41.58%	70.00%
Teacher VGG-face	\bigcirc	37.70%	68.89%
Teacher VGG-f	\bigcirc	26.85%	40.07%
Teacher VGG-face	\bigcirc	31.23%	48.29%
VGG-f [1]	ightarrow	47.58%	78.23%
VGG-face [1]	\bigcirc	49.23%	81.28%
VGG-f [2]	\bigcirc	42.45%	66.18%
VGG-face [2]	\bigcirc	43.18%	70.19%
VGG-f (standard T-S)	igodot	$48.75\%^{\dagger}$	$80.17\%^{\dagger}$
VGG-face (standard T-S)	igodot	49.75%	82.37%
VGG-f (triplet loss T-S)	igodot	48.13%	$80.05\%^\dagger$
VGG-face (triplet loss T-S)	igodot	49.71%	82.57%
VGG-f (triplet loss + standard T-S)	\bigcirc	$48.70\%^\dagger$	$81.09\%^\dagger$
VGG-face (triplet loss + standard T-S)	igodot	$50.09\%^\dagger$	$82.75\%^\dagger$

Accuracy rates of various models on AffectNet and FER+, for fully-visible faces (denoted by \bigcirc), lower-half-visible faces (denoted by \bigcirc) and upper-half-visible faces (denoted by \bigcirc)

Grad-cam activation maps

VGG-f (triplet loss + standard T-S)

VGG-face (triplet loss + standard T-S)

happiness happiness disgust fear fear neutral fear anger

Conclusions

- We proposed to train neural networks for facial expression recognition under strong occlusion, by applying two knowledge distillation strategies.
- On FER+, our VGG-face based on concatenated distilled embeddings attains an accuracy rate of 82.75% on lower-half-visible faces, which is only 2.24% below the accuracy rate of the state-of-theart VGG-13 on fully-visible faces.

Teacher-Student Training and Triplet Loss for Facial Expression Recognition under Occlusion

Mariana-Iuliana Georgescu^{1, 2}, Radu Tudor Ionescu¹

¹University of Bucharest, Bucharest, Romania, ²Novustech Services, Bucharest, Romania

