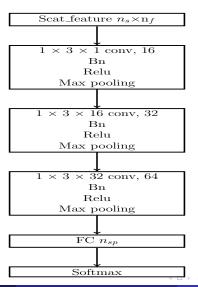
Hybrid Network For End-To-End Text-Independent Speaker Identification

Wajdi GHEZAIEL¹ , Luc BRUN² and Olivier LÉZORAY²

- Normandie Université, UNICAEN, ENSICAEN, CNRS, NormaSTIC, Caen France wajdi.ghezaiel@ensicaen.fr
 - Normandie Université, UNICAEN, ENSICAEN CNRS, GREYC Caen, France luc.brun@ensicaen.fr, olivier.lezoray@unicaen.fr

January 13, 2021


Abstract

- Speaker identification system for practical scenario.
- An end-to-end hybrid architecture HWSTCNN: convolutional neural network (CNN) and Wavelet Scattering Transform (WST) [1].
- WST is used as a fixed initialization of the first layers of a CNN network.
- The proposed hybrid architecture provides satisfactory results under the constraints of short and limited number of utterances.

Ghezaiel et al. HWSTCNN for SI January 13, 2021 2 / 10

Material and Methods

• The proposed hybrid network:

3/10

- Experiments on TIMIT [2] and LibriSpeech [3].
- 462 speakers from TIMIT. 5 sentences for training (15s in total) and 3 sentences for testing.
- 2484 speakers from LibriSpeech database. 7 utterances for training (12-15s in total), and 3 utterances for testing.
- Experiments are conducted with longer and shorter raw waveforms.

4 / 10

Ghezaiel et al. HWSTCNN for SI January 13, 2021

• Comparaison with SincNet [4], CNN-Raw [5].

	LibriSpeech	TIMIT
CNN-raw	98.91	98.62
SincNet-raw	98.93	99.13
HWSTCNN	99.28	98.12

Table: Identification accuracy rate (%) of the proposed HWSTCNN and related systems trained and tested with full utterances.

5 / 10

 Effect of training and testing utterances duration per speaker on performances:

	Train utterance duration			
Test	8s	12s	full	
1.5s	96.86	97.20	97.38	
3s	98.76	98.93	98.97	
full	99.12	99.25	99.28	

Table: Identification accuracy rate (%) of the proposed HWSTCNN on LibriSpeech dataset trained and tested with different utterances durations.

6/10

 Effect of short utterance duration on HWSTCNN, SincNet [4] and CNN-Raw [5].

	SincNet-raw	CNN-raw	HWSTCNN
1.5s-full	91.51	94.28	97.38
3s-full	97.57	96.87	98.97

Table: Identification accuracy rate (%) of the proposed HWSTCNN and related systems trained on LibriSpeech dataset and tested with different utterances durations.

Conclusion & Future Work

- Effectiveness of this hybrid architecture with limited data.
- Significant improvements over SincNet, CNN-Raw.
- Ability to reduce the required depth and spatial dimension of the deep learning networks.
- Future works: Evaluate HWSTCNN on Voxceleb.

Ghezaiel et al. HWSTCNN for SI January 13, 2021 8 / 10

References

- J. Andén, S. Mallat, "Deep scattering spectrum," IEEE Transactions on Signal Processing, vol. 62, number 16, pp. 4114–4128, 2014.
- L. Lamel, and R. Kassel, and S. Seneff, "Speech Database Development: Design and Analysis of the Acoustic-Phonetic Corpus," Proc. of DARPA Speech Recognition Work-shop, 1986.
- V. Panayotov, G. Chen, D. Povey, and S. Khudanpur, "Librispeech: An ASR corpus based on public domain audio books," Proc. of ICASSP, pp. 5206–5210, 2015.
- M. Ravanelli and Y. Bengio, "Speaker Recognition from raw waveform with SincNet," Proc. of SLT, 2018.
- H. Muckenhirn, M. Magimai-Doss, and S. Marcel, "On Learning Vocal Tract System Related Speaker Discriminative Information from Raw Signal Using CNNs," Proc. of Interspeech, 2018.

The End

Ghezaiel et al. HWSTCNN for SI January 13, 2021 10 / 10