Adversarially Constrained Interpolation for Unsupervised Domain Adaptation

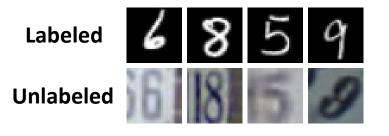
Mohamed Azzam, Aurele Tohokantche Gnanha and Hau-San Wong

Department of Computer Science City University of Hong Kong Si Wu

School of Comp. Sc. and Eng. South China University of Technology

Unsupervised Domain Adaptation (UDA)

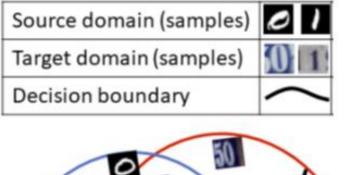
- UDA aims at adapting models trained on labeled data from the source domain to a completely unlabeled data from the target domain.
- Possible solution: learning a domain-invariant representation (Domain adversarial training).

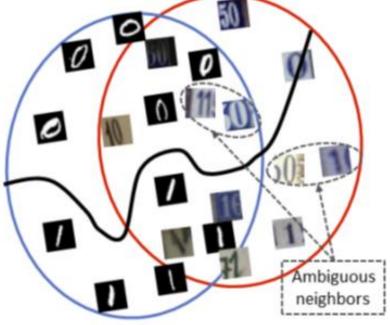


MNIST → SVHN

Challenges of Domain Adversarial Learning Methods

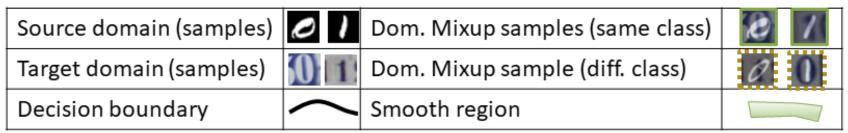
- Data deficiency in both domains
- Target-domain samples of different classes may become neighbors in the feature space

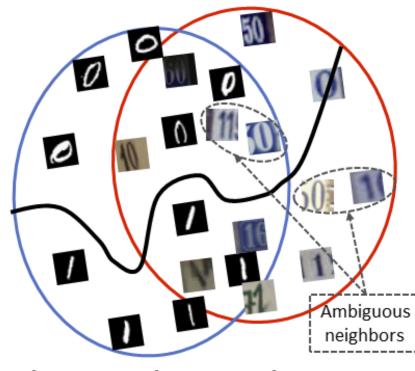


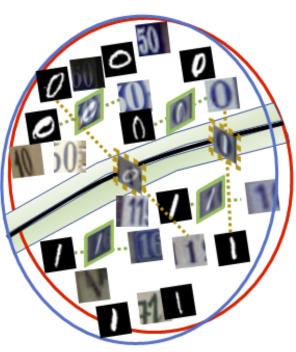


Previous Domain Adaptation Methods

Proposed Method



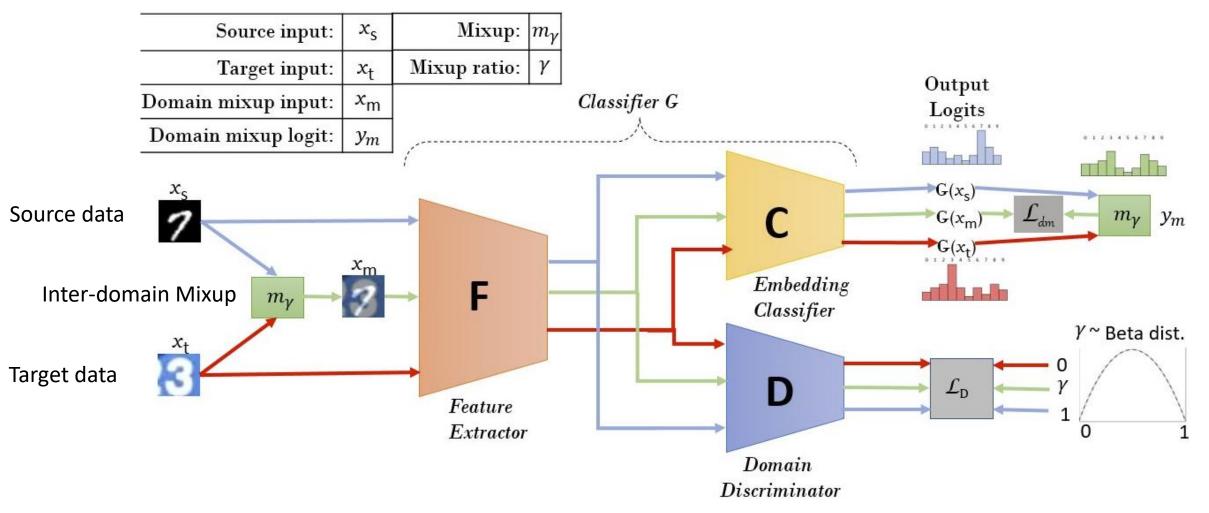




Previous Domain Adaptation Methods

Proposed Method

Proposed Framework



Inter-domain mixup

Classifier Training:

$$\mathcal{L}_{dm} = -E_{(x,x')\sim(\chi_s,\chi_t)} \Big[y_m^T \ln(G_{\sigma}(x_m)) \Big]$$

Where

$$x_n = m_{\gamma}(x, x')$$

$$y_m = \sigma \left(m_{\gamma} (G(x), G(x')) \right)$$

$$m_{\gamma}(x_1, x_2) = \gamma x_1 + (1 - \gamma) x_2$$

Domain Discriminator

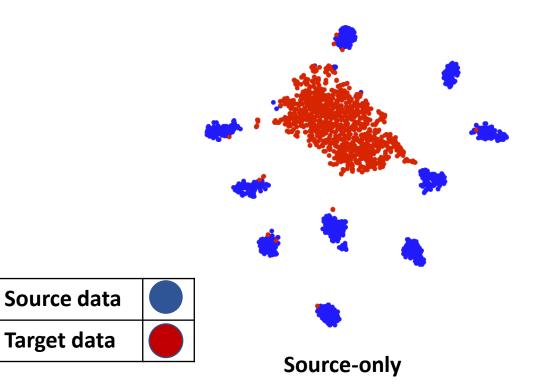
$$\mathcal{L}_{D} = \mathcal{L}_{D}' - E_{(x,x') \sim (\chi_{s},\chi_{t})} \left[\gamma \ln \left(D(F(x_{m})) \right) + (1-\gamma) \ln \left(1 - D(F(x_{m})) \right) \right]$$

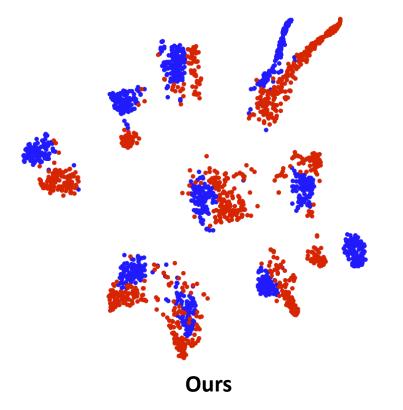
Experimental Results

Source data Target data	MNIST SVHN	SVHN MNIST	MNIST MNIST-M	CIFAR-10 STL-10	STL-10 CIFAR-10
Source-only	40.9	82.4	59.9	76.3	63.6
DANN	35.7	73.9	77.4	-	-
VADA	73.3	97.9	95.7	80.0	73.5
Co-DA	81.7	98.8	98.0	81.4	76.4
VMT	85.2	98.9	98.0	82.0	78.5
IIMT	-	97.3	99.5	83.1	81.6
Ours	88.7	99.0	98.1	83.7	79.7
VADA + DIRT-T	76.5	99.4	98.7	-	75.3
Ours + DIRT-T	95.9	99.6	98.9	-	82.9

T-SNE Plot: MNIST \rightarrow SVHN

• Using the output of the last hidden layer in C





Ablative Factors in Our Model

Source data Target data	MNIST SVHN	SVHN MNIST	MNIST MNIST-M	CIFAR-10 STL-10	STL-10 CIFAR-10
Source-only	40.9	82.4	59.9	76.3	63.6
Ours W/O Mix Fact. Pred.	83.8	98.3	97.6	83.7	79.7
Ours W/O Dom. Mixup	85.8	98.6	97.8	81.9	78.6
Ours	88.7	99.0	98.1	83.7	79.7

- Inter-domain mixup encourages binding samples of the same class regardless of their domain
- Enforcing the domain discriminator to predict the mixup ratio is vital for smoothing the feature manifold and facilitate training on interdomain mixup samples.

Thank You