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Unsupervised Domain Adaptation (UDA)

* UDA aims at adapting models trained on labeled data from the source
domain to a completely unlabeled data from the target domain.

* Possible solution: learning a domain-invariant representation
(Domain adversarial training).

Unlabeled ' fJ. I[Blﬁ .

MNIST = SVHN



Challenges of Domain Adversarial Learning Methods
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* Data deficiency in both domains

* Target-domain samples of different classes
may become neighbors in the feature space

Previous Domain Adaptation Methods

3



Proposed Method
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Proposed Framework
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Inter-domain mixup

Classifier Training:
Ldm — _E(x,x')fv(xs,xt) [y7”1111 ln(GO'(xm))]

Where
Xn =my,(x,x")

Ym = 0 (my (6(x),6(x"))
m, (x1,Xx2) = yx, + (1 = y)x,
Domain Discriminator

Ly =Ly — E(x»x’)"’(Xs;Xt) [)/ In (D (F(xm))) +(1—=y)In (1 - D(F(xm)))]



Experimental Results

Source data MNIST SVHN MNIST CIFAR-10 STL-10
Target data SVHN MNIST MNIST-M STL-10 CIFAR-10
Source-only 40.9 82.4 59.9 76.3 63.6
DANN 35.7 73.9 77.4 - -
VADA 73.3 97.9 95.7 80.0 73.5
Co-DA 81.7 98.8 98.0 81.4 76.4
VMT 85.2 98.9 98.0 82.0 78.5
IMT - 97.3 99.5 83.1 81.6
Ours 88.7 99.0 98.1 83.7 79.7
VADA + DIRT-T 76.5 99.4 98.7 - 75.3
Ours + DIRT-T 95.9 99.6 98.9 - 82.9




T-SNE Plot: MNIST = SVHN
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Ablative Factors in Our Model

Source data MNIST | SVHN MNIST CIFAR-10 STL-10
Target data SVHN MNIST MNIST-M | STL-10 CIFAR-10
Source-only 40.9 82.4 59.9 76.3 63.6
Ours W/O Mix Fact. Pred. 83.8 98.3 97.6 83.7 79.7
Ours W/O Dom. Mixup 85.8 98.6 97.8 81.9 78.6
Ours 88.7 99.0 98.1 83.7 79.7




Conclusion

* Inter-domain mixup encourages binding samples of the same class
regardless of their domain

* Enforcing the domain discriminator to predict the mixup ratio is vital
for smoothing the feature manifold and facilitate training on inter-
domain mixup samples.
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