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Introduction (1)

(Image from Zhang et al., 2016 [1])

Crowd Counting: To count a number of people in a given image for public safety,
surveillance monitoring, etc.
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Introduction (2)

Problem (Gao et al,, 2019 [2]) :

- Heavy occlusion (noisy image, blurred objects)

- Perspective distortion (different camera angles)

- Scale variation (different sizes of head and surrounding context), etc.
Goal: Solve these problems using a combination of multi-scale-aware modules and dual-path
decoder.

(e) Perspective distortion () Rotation (g) Nlumination variation (h) Weather changes
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Introduction (3)

Data preprocessing (based on Zhang et al, 2016 [1]): Convolve the head annotation with Gaussian
kernel (G) which has fixed standard deviation (o). Assuming that there is a head annotation at pixel x.
represented as d(x-x). The density map D(x) can be defined as

C: Headcounts

Ali) = 0 0.001 > D(i)| A:Attention
1 0.001 < D(i)| mMap

Gaussian convolution

3/10



W

15t Proposed model - M-SFANet (1) o "

”\\\\\h

Inspired by SFANet by Zhu et al., 2019 [3].
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ASPP with augmented image-level features
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N D3 Block = Concatenate, Conv 1x1x256, Conv 3x3x256
(U ) =Bilinear upsampling D2 Block = Concatenate, Conv 1x1x128, Conv 3x3x128
~ D1 Block = Concatenate, Conv 1x1x64, Conv 3x3x64, Conv 3x3x32

® = Element-wise multiplication

oM ) Am

Atrous spatial pyramid pooling (ASPP) with augmented
image-level features by Chen et al., 2018 [4].

T: Skip connection (Skip conn.)
DM: Density map, AM: Attention map

The architecture of M-SFANet
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15t Proposed model - M-SFANet (2)

Input image
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(oM ® AM) Final density map

D3 Block = Concatenate, Conv 1x1x256, Conv 3x3x256
Bilinear upsampling D2 Block = Concatenate, Conv 1x1x128, Conv 3x3x128
D1 Block = Concatenate, Conv 1x1x64, Conv 3x3x64, Conv 3x3x32

® = Element-wise multiplication

T: Skip connection (Skip conn.)
DM: Density map, AM: Attention map

The architecture of M-SFANet
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Context-aware module (CAN), Liu et al., 2019 [5].
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Input image
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Final density map
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D3 Block = Concatenate, Conv 1x1x256, Conv 3x3x256
D2 Block = Concatenate, Conv 1x1x128, Conv 3x3x128

D1 Block = Concatenate, Conv 1x1x64, Conv 3x3x64, Conv 3x3x32
® = Element-wise multiplication

= Max unpooling

DM: Density map, AM: Attention map, FMs: Feature maps

The architecture of M-SegNet

N2

0

There are no CAN and ASPP to additionally
emphasize multi-scale information.

The bilinear upsampling is replaced with max
unpooling operation using the memorized
max-pooling indices (Badrinarayanan et al., 2017 [6])

Less computational resources than M-SFANet with
competitive performance. More suitable for
speed-constrained applications.
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Results (1)

Performance comparison

CAN

623 100.0 7.8 122 2122 2437

SFANet 59.8 90.3 6.9 109 219.6 316.2

S-DCNet 583 95.0 6.7 107 204.2 3013

SANet + SPANet 59.4 92.5 6.5 9.9 232.6 3117
M-SegNet 60.55 100.80 6.80 10.41 188.40 262.21
M-SFANet 50.69 95.66 6.76 11.89 162.33 276.76
- M-SFANet + M-SegNet 57.55 94.48 6.32 10.06 167.51 256.26

o
33

i

More results on the paper.
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Results (2)

Ablation study
M-SFANet w/0 CAN 62.41 101.13 7.40 12.14
M-SFANet w/0 ASPP 61.25 102.37 7.67 13.28
M-SFANet w/o skip conn. 60.07 99.47 7.34 12.10

ASPP: Suitable for sparse scenes.
CAN: Suitable for dense scenes.
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Summary

For M-SFANet, we add the multi-scale-aware modules to SFANet architecture for better tackling
drastic scale changes of target objects.

Furthermore, the decoder structure of M-SFANet is adjusted to have more residual connections

in order to ensure that the learned multi-scale features of high-level semantic information will
impact how the model regress for the final density map.

For M-SegNet, we change the up-sampling algorithm from bilinear to max unpooling using the
memorized indices employed in SegNet. This yields the cheaper computation model while
providing competitive counting performance applicable to real-world applications.
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Thank you for your attention!
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