3D Pots Configuration System by Optimizing over Geometric Constraints

Jae Eun Kim^{*}, Muhammad Zeeshan Arshad⁺, Yoo Seong Jong⁺, Je-Hyung Hong⁺, Jinwook Kim⁺, Young Min Kim^{*} *Department of Electrical and Computer Engineering, Seoul National University +Imaging Media Research Center, Korea Institute of Science and Technology

Motivation

Problem Formulation

Find a binary matrix *B* encoding match between sampled points on the pottery fragments' break lines.

Preprocessing – Building a Matching Score Matrix *M*

- $M(m^{(i_1)}, m^{(i_2)})_{j_1 j_2} =$ (probabilistic score of match between the j_1^{th} point of fragment i_1 and the j_2^{th} point of fragment i_2)
- The probabilistic matching scores are calculated based on the similarity between the points' feature vectors.

$$M = \begin{pmatrix} M(\mathbf{m}^{(1)}, \mathbf{m}^{(1)}) & \cdots & M(\mathbf{m}^{(1)}, \mathbf{m}^{(N)}) \\ \vdots & \ddots & \vdots \\ M(\mathbf{m}^{(N)}, \mathbf{m}^{(1)}) & \cdots & M(\mathbf{m}^{(N)}, \mathbf{m}^{(N)}) \end{pmatrix}$$

Optimization

- From *M*, we want to find a binary matrix *B* where matched break lines are encoded as 1 and other elements are 0.
- In addition to being close to *M*, *B* must satisfy the following 2 constraints :

1. Bijection

2. Continuity

Optimization

• The problem can be formulated into a binary optimization problem, which can be relaxed into convex quadratic programming.

(s_i and s_j are binary variables indicating whether continuity should be enforced or not.)

Adaptation to Large-Scale Data - Hierarchical Extension

Experiment Results on Real Pottery Data

• Ablation :

With just feature matching (i.e. without the optimization process), hundreds of false-positives were reported between non-adjacent fragments alone when attempting to reassemble the 3 potteries altogether.

Color Legends Indicating Success of Match

color	match detected	correct location	wrong location
	×	-	-
	\checkmark	×	\checkmark
	\checkmark	\checkmark	\checkmark
	\checkmark	\checkmark	×

(3 False-Positives)

Result of Our Algorithm Run Separately on Each Pottery

(10 False-Positives)

Result of the Hierarchical Extension of Our Algorithm on the Mixture of the Fragments from the Three Potteries

Conclusion

- Effective finds the correct configuration of pottery fragments with extracted shape features along the break lines.
- Simple employing only convex quadratic programming.
- Flexible with no restriction on how to define the feature vector.

