# Complex-Object Visual Inspection: Empirical Studies on A Multiple Lighting Solution

Maya Aghaei, Matteo Bustreo, Pietro Morerio, Nicolo Carissimi, Alessio Del Bue, Vittorio Murino











# **Complex Object Visual Inspection**

An object with unknown characteristics a-priori in terms of

- Shape
- Size
- Material
- Color
- Defect type









## **Outline**



### (Custom-Designed) Lighting Configuration

**Goal:** Highlighting most effectively the defect to be inspected

**Proposal:** One set up, four illumination conditions, three lighting techniques



#### **Dataset**

- 4 illumination \* 3 camera exposure
  = 12 image per defect

**Goal:** maximize defect visibility (achieved 99.2% visibility of over <u>5K</u> defective regions)

Only 1 bbx per defect is enough to annotate all the 12 images.





\_\_\_\_

Does the proposed setup in fact outperform a conventional single illumination technique?

- Does the proposed setup in fact outperform a conventional single illumination technique?
- Does availability of the multi-modal data in the training phase be used to improve the uni-modal testing performance?

- Does the proposed setup in fact outperform a conventional single illumination technique?
- Does availability of the multi-modal data in the training phase be used to improve the uni-modal testing performance?
- Can different light conditions be considered as a natural data augmentation technique, or the resulting images are too correlated to actually bring any contribution during the model training?

- Does the proposed setup in fact outperform a conventional single illumination technique?
- Does availability of the multi-modal data in the training phase be used to improve the uni-modal testing performance?
- Can different light conditions be considered as a natural data augmentation technique, or the resulting images are too correlated to actually bring any contribution during the model training?
- Can inspection scenarios benefit from the multi-modal data availability also in the evaluation phase?





---

**Training**Single modality

**Evaluation**Single modality

**Training** *All* modalities

**Evaluation**All modalities

\_\_\_\_

**Training**Single modality

**Evaluation**Single modality

Training
All modalities

**Evaluation**All modalities

Training
All modalities

<u>Balanced data</u>

**Evaluation**Single modality

\_\_\_\_

**Training**Single modality

**Evaluation**Single modality

**Training**All modalities

**Evaluation**All modalities

Training
All modalities
Balanced data

**Evaluation**Single modality

Training
All modalities
All data

**Evaluation**Single modality

\_\_\_\_

**Training**Single modality

**Evaluation**Single modality

**Training**All modalities

**Evaluation**All modalities

Training
All modalities
Balanced data

**Evaluation**Single modality

Training
All modalities
All data

**Evaluation**Single modality

---



**Training**All modalities

**Evaluation**All modalities

Training
All modalities
Balanced data

**Evaluation**Single modality

Training
All modalities
All data

**Evaluation**Single modality

\_\_\_\_



Best results :)
Most lengthy :(

Better option?

#### Training

All modalities
Balanced data

**Evaluation**Single modality

**Training**All modalities

All data

**Evaluation**Single modality

\_\_\_\_



Best results :)
Most lengthy :(

Better option?

More modalities
in training -->

evaluation modality less important

**Training**All modalities

All data

**Evaluation**Single modality

---

Most effective modality

Best results :)
Most lengthy :(

Better option?

More modalities
in training -->

evaluation modality less important

Training
All modalities
All data

**Evaluation**Single modality

# Complex-Object Visual Inspection: Empirical Studies on A Multiple Lighting Solution

```
Maya Aghaei*, Matteo Bustreo*†, Pietro Morerio*, Nicolò Carissimi*, Alessio Del Bue*|| and Vittorio Murino*†$|| maya.aghaei@gmail.com, {name.surname}@iit.it

*Pattern Analysis & Computer Vision (PAVIS), Istituto Italiano di Tecnologia, Genova, Italy

†Dipartimento di Ingegneria Navale, Elettrica, Elettronica e delle Telecomunicazioni, University of Genova, Italy

‡Ireland Research Center, Huawei Technologies Co. Ltd., Dublin, Ireland

§Dipartimento di Informatica, University of Verona, Italy

Authors contributed equally to the paper
```