Complex-Object Visual Inspection: Empirical Studies on A Multiple Lighting Solution

Maya Aghaei, Matteo Bustreo, Pietro Morerio, Nicolo Carissimi, Alessio Del Bue, Vittorio Murino
Complex Object Visual Inspection

An object with unknown characteristics a-priori in terms of

- Shape
- Size
- Material
- Color
- Defect type
(Custom-Designed) Lighting Configuration

Goal: Highlighting most effectively the defect to be inspected

Proposal: One setup, four illumination conditions, three lighting techniques
Dataset

4 illumination * 3 camera exposure = 12 image per defect

Goal: maximize defect visibility
(achieved 99.2% visibility of over 5K defective regions)

Only 1 bbx per defect is enough to annotate all the 12 images.
Research Questions
Research Questions

Does the proposed setup in fact outperform a conventional single illumination technique?
Research Questions

- Does the proposed setup in fact outperform a conventional single illumination technique?
- Does availability of the multi-modal data in the training phase be used to improve the uni-modal testing performance?
Research Questions

- Does the proposed setup in fact outperform a conventional single illumination technique?
- Does availability of the multi-modal data in the training phase be used to improve the uni-modal testing performance?
- Can different light conditions be considered as a natural data augmentation technique, or the resulting images are too correlated to actually bring any contribution during the model training?
Research Questions

- Does the proposed setup in fact outperform a conventional single illumination technique?
- Does availability of the multi-modal data in the training phase be used to improve the uni-modal testing performance?
- Can different light conditions be considered as a natural data augmentation technique, or the resulting images are too correlated to actually bring any contribution during the model training?
- Can inspection scenarios benefit from the multi-modal data availability also in the evaluation phase?
Empirical studies
Empirical studies

- Training
 - Single modality
- Training
 - All modalities
- Evaluation
 - Single modality
- Evaluation
 - All modalities

Baselines
Empirical studies

- Training
 - Single modality
- Evaluation
 - Single modality

- Training
 - All modalities
- Evaluation
 - All modalities

- Training
 - All modalities
 - Balanced data
- Evaluation
 - Single modality

Baselines
Empirical studies

- Training
 - Single modality
 - All modalities

- Evaluation
 - Single modality
 - All modalities

- Training
 - All modalities
 - Balanced data

- Evaluation
 - Single modality

Baselines
Final Results (Conclusions)

- Training
 - Single modality
 - All modalities

- Evaluation
 - Single modality
 - All modalities

Training
- All modalities
 - Balanced data

Evaluation
- Single modality

Training
- All modalities
 - All data

Evaluation
- Single modality

Baselines
Final Results (Conclusions)

Most effective modality

- **Training**
 - All modalities
- **Evaluation**
 - All modalities

- **Training**
 - All modalities
 - Balanced data
- **Evaluation**
 - Single modality

- **Training**
 - All modalities
 - All data
- **Evaluation**
 - Single modality

Baselines
Final Results (Conclusions)

Most effective modality

Best results :)
Most lengthy :(

Better option?

Training
All modalities
Balanced data

Evaluation
Single modality

Training
All modalities
All data

Evaluation
Single modality

Baselines
Final Results (Conclusions)

Most effective modality

Best results :)
Most lengthy :(

Better option?

More modalities in training --> evaluation modality less important

Training
All modalities
All data

Evaluation
Single modality

Baselines
Final Results (Conclusions)

- Most effective modality
- Best results :)
 Most lengthy :(
 Better option?
- More modalities in training --> evaluation modality less important
- Training
 All modalities
 All data
- Evaluation
 Single modality

Baselines
Complex-Object Visual Inspection: Empirical Studies on A Multiple Lighting Solution

Maya Aghaei*, Matteo Bustreo*†, Pietro Morerio*, Nicolò Carissimi*, Alessio Del Buc*|| and Vittorio Murino*‡§||
maya.aghaei@gmail.com, {name.surname}@iit.it

*Pattern Analysis & Computer Vision (PAVIS), Istituto Italiano di Tecnologia, Genova, Italy
†Dipartimento di Ingegneria Navale, Elettrica, Elettronica e delle Telecomunicazioni, University of Genova, Italy
‡Ireland Research Center, Huawei Technologies Co. Ltd., Dublin, Ireland
§Dipartimento di Informatica, University of Verona, Italy
|| Authors contributed equally to the paper