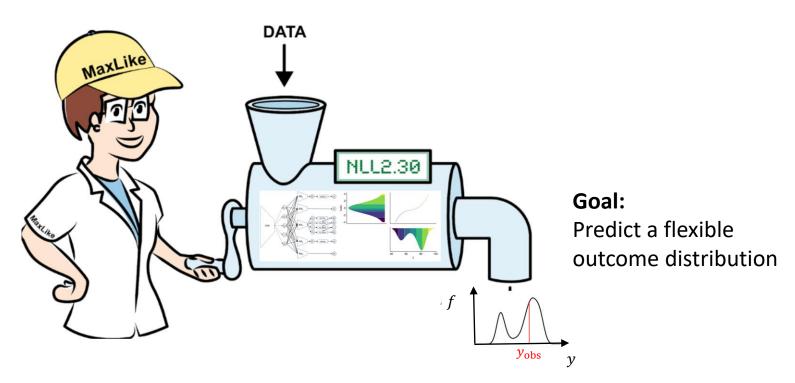
Deep transformation models for tackling complex probabilistic regression problems

https://arxiv.org/abs/2004.00464

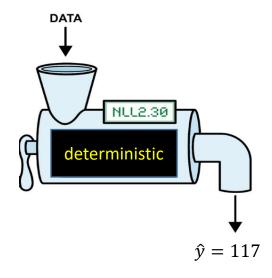


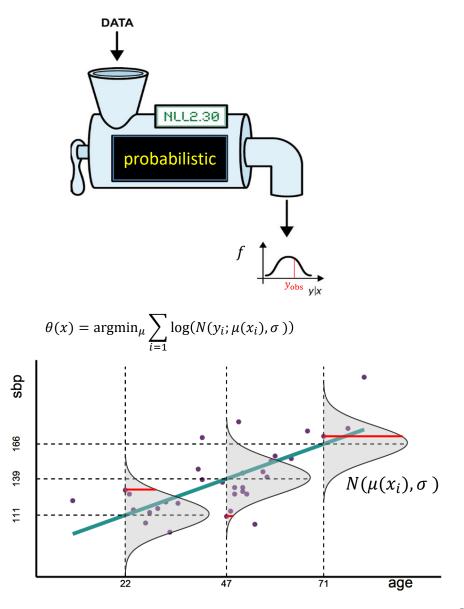
Beate Sick *Torsten HothornOliver Dürr *EBPI, University of Zurich &EBPI, University of ZurichIOS, Konstanz University of Applied SciencesIDP, Zurich University of Applied SciencesEmail: torsten.hothorn@uzh.chEmail: oliver.duerr@htwg-konstanz.de

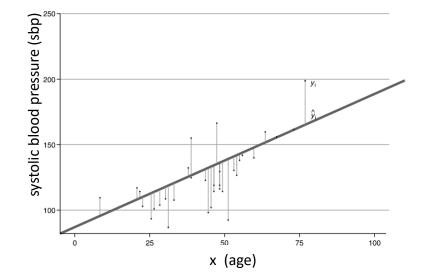
1

Non-probabilistic versus probabilistic regression DL models

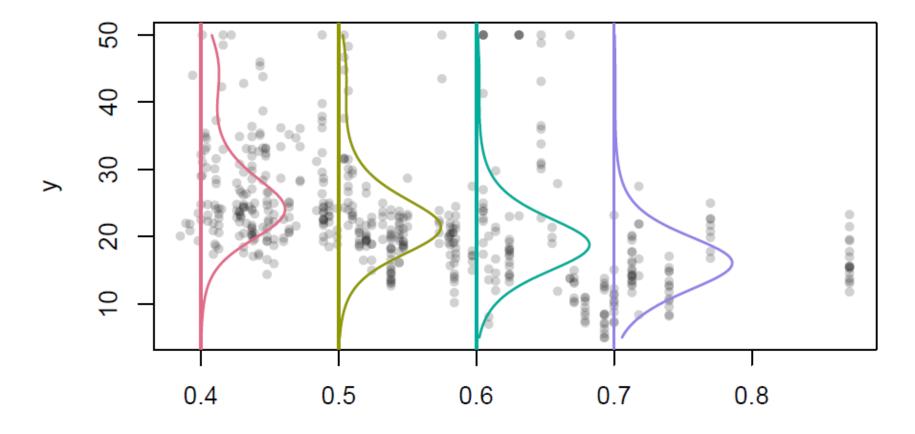
....







Have a look on more complex conditional probability distributions



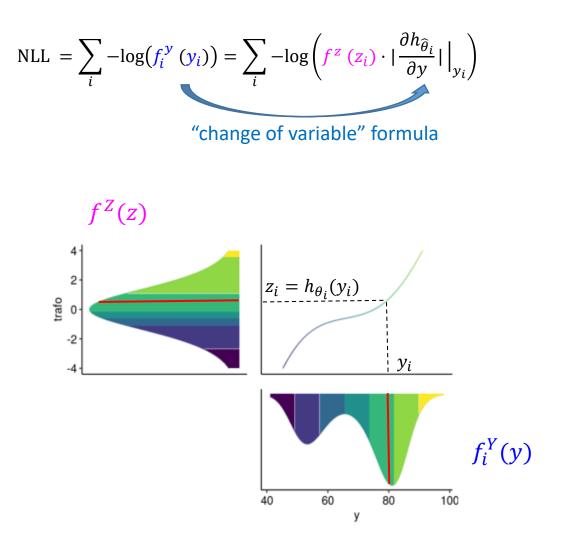
Х

How to model complex distributions?

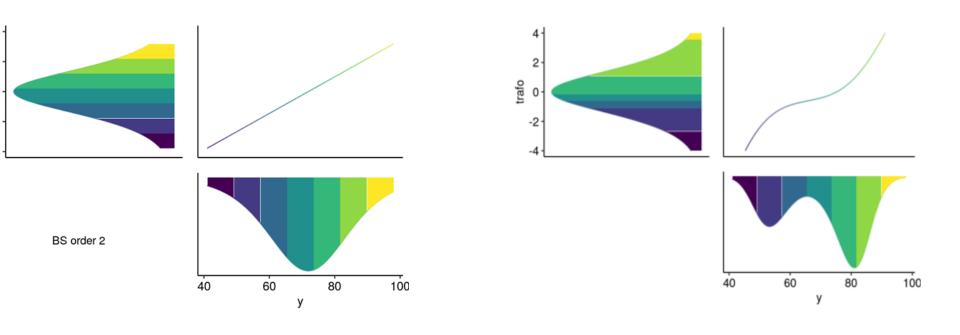
- Use a mixture model (e.g. mixture Gaussians)
- Use a transformation model!

Idea of a transformation model

Idea: we fit a transformation function h that transforms the flexible conditional outcome $f_i^Y(y)$ to an easy (here N(0,1)) distribution $f^Z(z)$



For non-Gaussian CPDs we need a non-linear transformation



Using Bernsteinpolynomials to approximate the transformation h

$$z_{x} = h_{\vartheta(x)}(\tilde{y}) = \sum_{k=1}^{M} \frac{\vartheta_{k}(x)}{M+1} Be_{k}(\tilde{y})$$

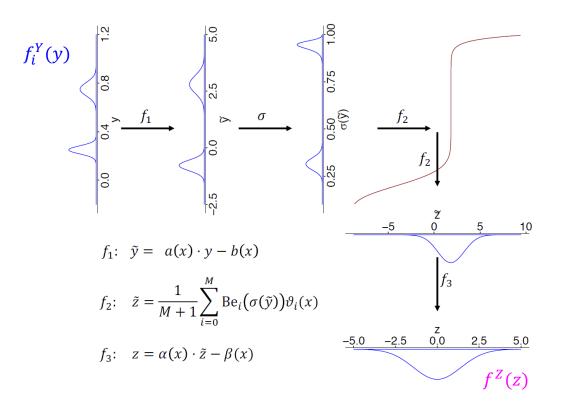
$$\tilde{y} \in [0,1]$$

 $z = h_{\vartheta(x)}(\tilde{y})$

Bernstein polynomials have nice properties:

- They can approximate every function on the support [0; 1]
- The order M controls the flexibility
- Its bijective, i.e. monotone increasing, if parameters $\vartheta_1 \leq \vartheta_2 \leq \cdots \leq \vartheta_M$

Our deep transformation model

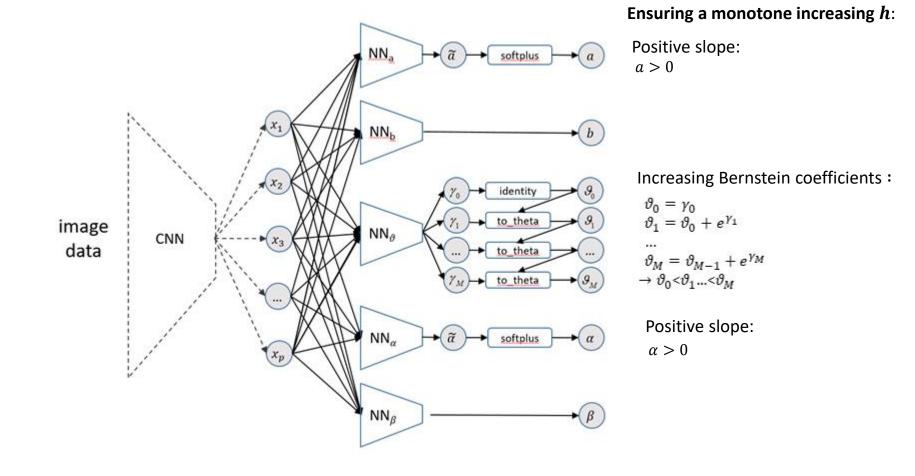


$$h_{\theta(x)} = f_{3,\alpha_{\chi},\beta_{\chi}} \circ f_{2,\vartheta_{0_{\chi}},\dots,\vartheta_{M_{\chi}}} \circ \sigma \circ f_{1,\alpha_{\chi},b_{\chi}} \qquad \text{NLL} = \sum_{i} -\log\left(f^{z}(z_{i}) \cdot |\frac{\partial h_{\theta(x_{i})}}{\partial y}|\Big|_{y_{i}}\right)$$

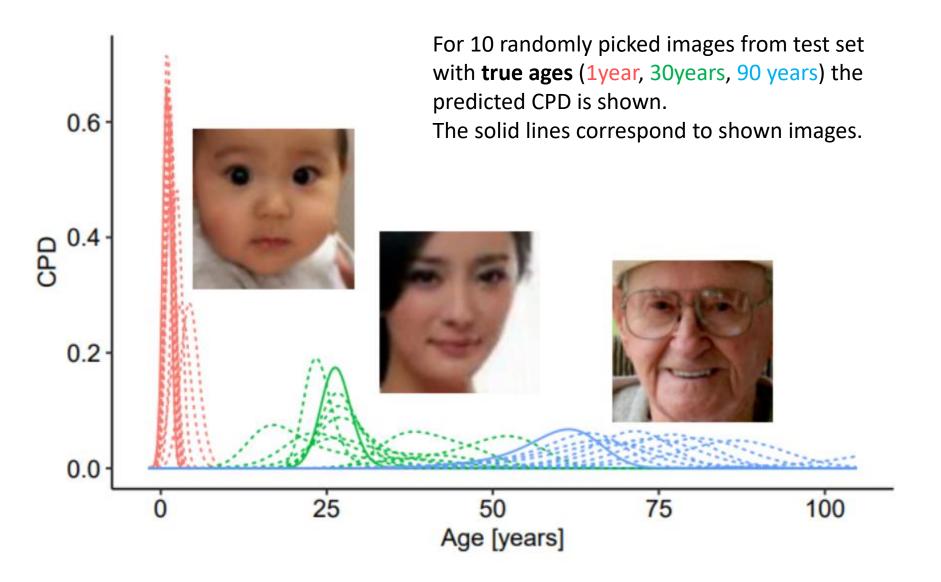
R implementation: <u>https://github.com/tensorchiefs/dl_mlt</u> Python implementation: <u>https://github.com/MArpogaus/TensorFlow-Probability-Bernstein-Polynomial-Bijector</u>

Architecture of our Deep transformation model

$$h_{\theta(x)} = f_{3,\alpha_x,\beta_x} \circ f_{2,\vartheta_{0_x},\dots,\vartheta_{M_x}} \circ \sigma \circ f_{1,\alpha_x,b_x} \qquad \text{NLL} = \sum_i -\log\left(f^z(z_i) \cdot |\frac{\partial h_{\theta(x_i)}}{\partial y}|\Big|_{y_i}\right)$$



Application: Predict CPD for age based on an image

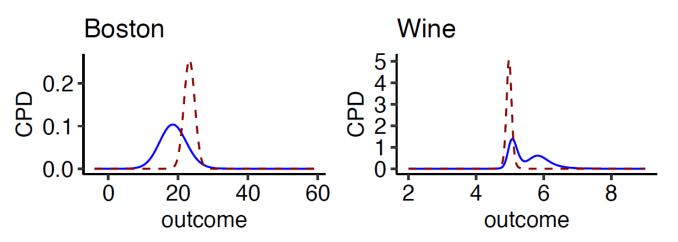


Application: Benchmarking our model

TABLE I

COMPARISON OF PREDICTION PERFORMANCE (TEST NLL, SMALLER IS BETTER) ON REGRESSION BENCHMARK UCI DATASETS. THE BEST METHOD FOR EACH DATASET IS BOLDED, AS ARE THOSE WITH STANDARD ERRORS THAT OVERLAP WITH THE STANDARD ERRORS OF THE BEST METHOD.

Data Set	Ν	DL_MLT	NGBoost	MC Dropout	Deep Ensembles	Gaussian Process	MDN	NFN
Boston	506	$\textbf{2.42} \pm \textbf{0.050}$	$\textbf{2.43} \pm \textbf{0.15}$	$\textbf{2.46} \pm \textbf{0.25}$	$\textbf{2.41} \pm \textbf{0.25}$	2.37 ±0.24	$\textbf{2.49} \pm \textbf{0.11}$	2.48 ±0.11
Concrete	1030	3.29 ± 0.02	$\textbf{3.04} \pm \textbf{0.17}$	$\textbf{3.04} \pm \textbf{0.09}$	$\textbf{3.06} \pm \textbf{0.18}$	3.03 ±0.11	$\textbf{3.09} \pm \textbf{0.08}$	$\textbf{3.03} \pm \textbf{0.13}$
Energy	768	1.06 ± 0.09	0.60 ± 0.45	1.99 ± 0.09	1.38 ± 0.22	$\textbf{0.66} \pm \textbf{0.17}$	$\textbf{1.04} \pm \textbf{0.09}$	1.21 ± 0.08
Kin8nm	8192	-0.99 ± 0.01	-0.49 ± 0.02	-0.95 ± 0.03	$\textbf{-1.20}\ \pm \textbf{0.02}$	-1.11 ±0.03	NA	NA
Naval	11934	-6.54 \pm 0.03	-5.34 ± 0.04	-3.80 ± 0.05	-5.63 ± 0.05	-4.98 ±0.02	NA	NA
Power	9568	$\textbf{2.85} \pm \textbf{0.005}$	$\textbf{2.79}\pm\textbf{0.11}$	$\textbf{2.80} \pm \textbf{0.05}$	$\textbf{2.79} \ \pm \textbf{0.04}$	$\textbf{2.81} \pm \textbf{0.05}$	NA	NA
Protein	45730	$\textbf{2.63} \pm \textbf{0.006}$	2.81 ± 0.03	2.89 ± 0.01	2.83 ± 0.02	2.89 ± 0.02	NA	NA
Wine	1588	0.67 ± 0.028	0.91 ± 0.06	0.93 ± 0.06	0.94 ± 0.12	0.95 ± 0.06	NA	NA
Yacht	308	0.004 ± 0.046	0.20 ± 0.26	1.55 ± 0.12	1.18 ±0.21	0.10 ± 0.26	NA	NA



The 2 CPDs (dashed and solid line) correspond to 2 picked observations in the respective data set.

Summary and outlook

- Transformation models allow to model highly flexible outcome
 → extremely high prediction performance
- Any kind of input data and NN architectures can be integrated
- In the mean time we have extended the approach
 - to ordinal outcomes
 - to provide interpretable model parameters

