
Deep transformation models
for tackling complex probabilistic regression problems

1

Goal:
Predict a flexible
outcome distribution

𝑦

𝑓

𝑦obs

https://arxiv.org/abs/2004.00464

https://arxiv.org/abs/2004.00464

Non-probabilistic versus probabilistic regression DL models

2

Prob. DL

m

X=35
X=35

deterministic

𝑁(𝜇𝑥, 𝜎
2)

𝑓

sy
st

o
lic

 b
lo

o
d

 p
re

ss
u

re
 (

sb
p

)

x (age)

𝑁(𝜇(𝑥𝑖), 𝜎)

𝜃(𝑥) = argmin𝜇෍

𝑖=1

log 𝑁(𝑦𝑖; 𝜇(𝑥𝑖), 𝜎)

Prob. DL

m

X=35

probabilistic

𝑓ො𝑦 = 117

𝑦obs

Have a look on more complex conditional probability distributions

3Image credits: Lucas Kook

How to model complex distributions?

4

• Use a mixture model (e.g. mixture Gaussians)

• Use a transformation model!

Idea of a transformation model

5

𝑓𝑖
𝑌(𝑦)

𝑓𝑍(𝑧)

Idea: we fit a transformation function h that transforms the flexible

conditional outcome 𝑓𝑖
𝑌(𝑦) to an easy (here 𝑁(0,1)) distribution 𝑓𝑍(𝑧)

𝑧𝑖 = ℎ𝜃𝑖(𝑦𝑖)

𝑦𝑖

NLL =෍

𝑖

−log 𝑓𝑖
𝑦
(𝑦𝑖) =෍

𝑖

−log 𝑓𝑧 (𝑧𝑖) ⋅ |
𝜕ℎ෡𝜃𝑖
𝜕𝑦

| ቚ
𝑦𝑖

“change of variable” formula

For non-Gaussian CPDs we need a non-linear transformation

6Image credits: Lucas Kook

Using Bernsteinpolynomials to approximate the transformation h

7

෥𝑦

𝑧 = ℎ𝜗(𝑥) (෤𝑦)

𝑧𝑥 = ℎ𝜗 𝑥 (෤𝑦) = ෍

𝑘=1

𝑀
𝜗𝑘(𝑥)

𝑀 + 1
𝐵𝑒𝑘 ෤𝑦

෤𝑦 ∈ [0,1]

Bernstein polynomials have nice properties:

• They can approximate every function on the support [0; 1]

• The order M controls the flexibility

• Its bijective, i.e. monotone increasing, if parameters 𝜗1 ≤ 𝜗2 ≤ ⋯ ≤ 𝜗𝑀

Most Likely Transfromation (MLT) 2017 by T.Hothorn, L.Möst, P.Bühlmann https://onlinelibrary.wiley.com/doi/full/10.1111/sjos.12291

https://onlinelibrary.wiley.com/doi/full/10.1111/sjos.12291

Our deep transformation model

8

NLL =෍

𝑖

−log 𝑓𝑧 (𝑧𝑖) ⋅ |
𝜕ℎ ෢𝜃(𝑥𝑖)

𝜕𝑦
| ቚ
𝑦𝑖

R implementation: https://github.com/tensorchiefs/dl_mlt
Python implementation: https://github.com/MArpogaus/TensorFlow-Probability-Bernstein-Polynomial-Bijector

ℎ𝜃 𝑥 = 𝑓3,𝛼𝑥,𝛽𝑥 ∘ 𝑓2,𝜗0𝑥,….,𝜗𝑀𝑥
∘ 𝜎 ∘ 𝑓1,𝑎𝑥,𝑏𝑥

𝑓𝑖
𝑌(𝑦)

𝑓𝑍(𝑧)

https://github.com/tensorchiefs/dl_mlt
https://github.com/MArpogaus/TensorFlow-Probability-Bernstein-Polynomial-Bijector

Architecture of our Deep transformation model

9

𝜗0 = 𝛾0
𝜗1 = 𝜗0 + 𝑒𝛾1

…
𝜗𝑀 = 𝜗𝑀−1 + 𝑒𝛾𝑀

→ 𝜗0<𝜗1…<𝜗𝑀

Ensuring a monotone increasing 𝒉:

𝑎 > 0

𝛼 > 0

Increasing Bernstein coefficients ∶

Positive slope:

Positive slope:

NLL =෍

𝑖

−log 𝑓𝑧 (𝑧𝑖) ⋅ |
𝜕ℎ ෢𝜃(𝑥𝑖)

𝜕𝑦
| ቚ
𝑦𝑖

ℎ𝜃 𝑥 = 𝑓3,𝛼𝑥,𝛽𝑥 ∘ 𝑓2,𝜗0𝑥,….,𝜗𝑀𝑥
∘ 𝜎 ∘ 𝑓1,𝑎𝑥,𝑏𝑥

Application: Predict CPD for age based on an image

10

For 10 randomly picked images from test set
with true ages (1year, 30years, 90 years) the
predicted CPD is shown.
The solid lines correspond to shown images.

Application: Benchmarking our model

11

The 2 CPDs (dashed and solid line) correspond to 2 picked observations in the respective data set.

Summary and outlook

• Transformation models allow to model highly flexible outcome
 extremely high prediction performance

• Any kind of input data and NN architectures can be integrated

• In the mean time we have extended the approach

• to ordinal outcomes

• to provide interpretable model parameters

12

ℎ 𝑦𝑘 𝑥 = 𝜗𝑘 − 𝛽 ⋅ 𝑥

If x increases by
one unit, the odds
for a higher class
increases by 𝑒𝛽

Regression with ordinal outcome: https://arxiv.org/abs/2010.08376Regression with continuous outcome: https://arxiv.org/abs/2004.00464

Interpretabel but less flexible: Maximal flexibility but not interpretable:

ℎ ෤𝑦 𝑋 = 𝑥 = ෍

𝑘=1

𝑀
𝜗𝑘(𝑥)

𝑀 + 1
𝐵𝑒𝑘 ෤𝑦

M:

https://arxiv.org/abs/2010.08376
https://arxiv.org/abs/2004.00464

