
Deep transformation models 
for tackling complex probabilistic regression problems
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Goal:
Predict a flexible 
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Non-probabilistic versus probabilistic regression DL models
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Have a look on more complex conditional probability distributions
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How to model complex distributions?
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• Use a mixture model (e.g. mixture Gaussians)

• Use a transformation model!



Idea of a transformation model
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𝑓𝑖
𝑌(𝑦)

𝑓𝑍(𝑧)

Idea: we fit a transformation function h that transforms the flexible 

conditional outcome  𝑓𝑖
𝑌(𝑦) to an easy (here 𝑁(0,1)) distribution 𝑓𝑍(𝑧)

𝑧𝑖 = ℎ𝜃𝑖(𝑦𝑖)
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“change of variable” formula



For non-Gaussian CPDs we need a non-linear transformation
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Using Bernsteinpolynomials to approximate the transformation h
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෥𝑦

𝑧 = ℎ𝜗(𝑥) ( ෤𝑦)

𝑧𝑥 = ℎ𝜗 𝑥 ( ෤𝑦) = ෍

𝑘=1

𝑀
𝜗𝑘(𝑥)

𝑀 + 1
𝐵𝑒𝑘 ෤𝑦

෤𝑦 ∈ [0,1]

Bernstein polynomials have nice properties:

• They can  approximate every function on the support [0; 1]

• The order M controls the flexibility

• Its bijective, i.e. monotone increasing, if parameters 𝜗1 ≤ 𝜗2 ≤ ⋯ ≤ 𝜗𝑀

Most Likely Transfromation (MLT) 2017 by T.Hothorn, L.Möst, P.Bühlmann https://onlinelibrary.wiley.com/doi/full/10.1111/sjos.12291

https://onlinelibrary.wiley.com/doi/full/10.1111/sjos.12291


Our deep transformation model
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R implementation: https://github.com/tensorchiefs/dl_mlt
Python implementation: https://github.com/MArpogaus/TensorFlow-Probability-Bernstein-Polynomial-Bijector

ℎ𝜃 𝑥 = 𝑓3,𝛼𝑥,𝛽𝑥 ∘ 𝑓2,𝜗0𝑥,….,𝜗𝑀𝑥
∘ 𝜎 ∘ 𝑓1,𝑎𝑥,𝑏𝑥

𝑓𝑖
𝑌(𝑦)

𝑓𝑍(𝑧)

https://github.com/tensorchiefs/dl_mlt
https://github.com/MArpogaus/TensorFlow-Probability-Bernstein-Polynomial-Bijector


Architecture of our Deep transformation model
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𝜗0 = 𝛾0
𝜗1 = 𝜗0 + 𝑒𝛾1

…
𝜗𝑀 = 𝜗𝑀−1 + 𝑒𝛾𝑀

→ 𝜗0<𝜗1…<𝜗𝑀

Ensuring a monotone increasing 𝒉:

𝑎 > 0

𝛼 > 0

Increasing Bernstein coefficients ∶

Positive slope:

Positive slope:
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ℎ𝜃 𝑥 = 𝑓3,𝛼𝑥,𝛽𝑥 ∘ 𝑓2,𝜗0𝑥,….,𝜗𝑀𝑥
∘ 𝜎 ∘ 𝑓1,𝑎𝑥,𝑏𝑥



Application: Predict CPD for age based on an image
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For 10 randomly picked images from test set 
with true ages (1year, 30years, 90 years) the 
predicted CPD is shown.
The solid lines correspond to shown images.



Application: Benchmarking our model
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The 2 CPDs (dashed and solid line) correspond to 2 picked observations in the respective data set.



Summary and outlook

• Transformation models allow to model highly flexible outcome 
 extremely high prediction performance

• Any kind of input data and NN architectures can be integrated

• In the mean time we have extended the approach

• to ordinal outcomes

• to provide interpretable model parameters
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ℎ 𝑦𝑘 𝑥 = 𝜗𝑘 − 𝛽 ⋅ 𝑥

If x increases by
one unit, the odds
for a higher class
increases by 𝑒𝛽

Regression with ordinal outcome: https://arxiv.org/abs/2010.08376Regression with continuous outcome: https://arxiv.org/abs/2004.00464

Interpretabel but less flexible: Maximal flexibility but not interpretable: 
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https://arxiv.org/abs/2010.08376
https://arxiv.org/abs/2004.00464

