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Deep Learning reached superior performance in many fields:

1. Lots of data (e.g. images, text)
2. High capacity neural networks (e.g ResNets) 

Problem:

1. Obtaining data at large scales
a. time-consuming
b. difficult

2. Labeling data at large scales
a. expensive
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Well-known approaches to decrease data needs (samples/labels):

1. Transfer learning
2. Few-Shot learning
3. Self-Supervised learning
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Well-known approaches to decrease data need (samples/labels):

1. Transfer learning
2. Few-Shot learning
3. Self-Supervised learning

Collect a large source labeled dataset

Collect a large unlabeled 
dataset



In this work:

•               
•                         

        

Problem Formulation
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We are facing a supervised classification problem 

      is balanced and relatively small (constraining number of samples per class       )

No restriction on the number of classes       

Objective

Testing sets remain fixed at evaluation time
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Vector data:

1. Do we need hundreds of classifiers to solve real world classification problems? 
[Fernandez et al. 2014]

2. Modern neural networks generalize on small data sets [Olson et al. 2018]

Random Forests and MLPs were the best models

Frankenstein: Learning deep face 
representations using small data [Hu et al. 
2017]

Facial recognition, very domain 
specific

Generative Modeling for 
Small-Data Object Detection 
[Liu et al. 2019]

CT images detection

Image generation:
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Algorithmic approaches on image datasets:

1. Harnessing the Power of Infinitely Wide Deep Nets on Small-data Tasks 
[Arora et al. 2020]

Neural tangent kernels (NTK) on UCI repository and Few-shot Learning 
experiments

Convolutional neural tangent kernels (CNTK) for small CIFAR10 task 
better than ResNet-34

2. Deep Learning on Small Datasets without Pre-Training using Cosine Loss 
[Barz et al. 2020]

Propose the use of cosine loss instead of cross-entropy loss

Improved results mainly on fine-grained datasets with 20 - 80 samples 
per class and 66 - 555 classes



1. Influence of model complexity on performance
a. CNN with 4 conv layers, 16/32/64 base filters (CNN-lc/mc/hc)
b. ResNet-20 with 16 base filters

2. Influence of regularization techniques on performance
a. Dropout with varying drop-rates (0.0/0.4/0.7)
b. Enable/disable standard data augmentation

i. Cropping + flipping on CIFAR-10
ii. Cropping + flipping + color distortion on SVHN

iii. Cropping on FMNIST

3. Comparison of baseline models with state-of-the art approaches:
a. CNTK [Arora et al. 2020]
b. Cosine loss [Barz et al. 2020]

Empirical study
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Standard optimization set-up

1. Adam - default parameters for CNNs
2. SGD + Nesterov + weight decay = 1e-4 + piecewise learning rate schedule for ResNet
3. Epochs changed according to the size of model and training set
4. Batch size = 32
5. Cross-entropy loss
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Model complexity is a critical factor:

- Basic CNNs  --  small datasets
- ResNet         --  larger datasets
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Dropout remains a good regularizer:

- Gains up to 10%
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Data augmentation can induce large gains:

- Up to 20% (ResNet-20)
- Up to 10% (Cnn-hc)
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Comparison with state of the art:

• ResNet-20 struggles with 
extremely limited data

• Cosine and cross-entropy 
losses are comparable

• Basic CNN-hc outperforms 
the CNTK [Arora et al. 2020] 
by up to 5%

Considering evaluation protocol of [Arora et al. 2020] (no data augmentation)
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Model complexity is a critical factor for small data domains when using 
standard training set-ups:

1. New proposed models should be compared to simple nets as well

Regularization:

1. Dropout is a good regularizer also with small data 
2. Even standard data augmentation can induce large gains:

a. Most promising direction

Baseline models are better than or comparable to state-of-the-art 
approaches in the tested set-up:

1. Cross-entropy loss is comparable to the cosine loss 
2. A shallow CNN with 64 base filters outperforms CNTK


