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Introduction

Deep Learning reached superior performance in many fields:

1. Lots of data (e.g. images, text)
2. High capacity neural networks (e.g ResNets)

Problem:

1. Obtaining data at large scales

a. time-consuming
b. difficult

2. Labeling data at large scales
a. expensive




Introduction

Well-known approaches to decrease data needs (samples/labels):

1. Transfer learning
2. Few-Shot learning . :
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Introduction

Well-known approaches to decrease data need (samples/labels):

1. fer | ME  Collect a large source labeled dataset
2. =Shot i _ Transfer Learning

3.
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Problem Formulation

We are facing a supervised classification problem P = {(x1,¥y1) -+, (Xs,¥,)}

D is balanced and reIativer small (constraining number of samples per class IV )

No restriction on the number of classes K

Testing sets remain fixed at evaluation time

Objective Y = fg (X)

In this work:
X € RHXWXD

e N € {10,20,40, 80, 160, 320, 640, 1280}




Related work

Vector data:

1. Do we need hundreds of classifiers to solve real world classification problems?

[Fernandez et al. 2014]
2. Modern neural networks generalize on small data sets [Olson et al. 2018]

Random Forests and MLPs were the best models

Image generation:

Frankenstein: Learning deep face Generative Modeling for
representations using small data [Hu et al. Small-Data Object Detection
2017] [Liu et al. 2019]
Facial recognition, very domain CT images detection
specific
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Related work

Algorithmic approaches on image datasets:

1.

Harnessing the Power of Infinitely Wide Deep Nets on Small-data Tasks
[Arora et al. 2020]

Neural tangent kernels (NTK) on UCI repository and Few-shot Learning
experiments

Convolutional neural tangent kernels (CNTK) for small CIFAR10 task
better than ResNet-34

Deep Learning on Small Datasets without Pre-Training using Cosine Loss
[Barz et al. 2020]

Propose the use of cosine loss instead of cross-entropy loss

Improved results mainly on fine-grained datasets with 20 - 80 samples
per class and 66 - 555 classes




Empirical study

1. Influence of model complexity on performance = == Sy=
a. CNN with 4 conv layers, 16/32/64 base filters (CNN-lc/mc/hc) W
b. ResNet-20 with 16 base filters

2. Influence of regularization techniques on performance

a. Dropout with varying drop-rates (0.0/0.4/0.7) -@'.-.%-
b. Enable/disable standard data augmentation :
i. Cropping + flipping on CIFAR-10

ii. Cropping + flipping + color distortion on SVHN ey i

iii.  Cropping on FMNIST . Er 7 % N
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3. Comparison of baseline models with state-of-the art approaches:
a. CNTK [Arora et al. 2020]
b. Cosine loss [Barz et al. 2020]

Standard optimization set-up

Adam - default parameters for CNNs

SGD + Nesterov + weight decay = 1e-4 + piecewise learning rate schedule for ResNet

Epochs changed according to the size of model and training set

Batch size = 32 7
Cross-entropy loss

unhwn e




Results
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Model complexity is a critical factor:

Test Accuracy

o
o

o
w

o
IS

o
w

o
N

Basic CNNs -- small datasets

ResNet -- larger datasets
CIFAR-10
CNN-Ic
—e&— CNN-mc
—e— CNN-hc
—e— ResNet-20
10 20 40 80 160 320 640 1280

Samples/class




Results

FMNIST - CNN-hc
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Dropout remains a good regularizer:
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Gains up to 10%
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Results
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Data augmentation can induce large gains:
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Results
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Considering evaluation protocol of [Arora et al. 2020] (no data augmentation)
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Conclusions

Model complexity is a critical factor for small data domains when using
standard training set-ups:

1.  New proposed models should be compared to simple nets as well
Regularization:

1. Dropout is a good regularizer also with small data

2. Even standard data augmentation can induce large gains:
a. Most promising direction

Baseline models are better than or comparable to state-of-the-art
approaches in the tested set-up:

1. Cross-entropy loss is comparable to the cosine loss
2. A shallow CNN with 64 base filters outperforms CNTK
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