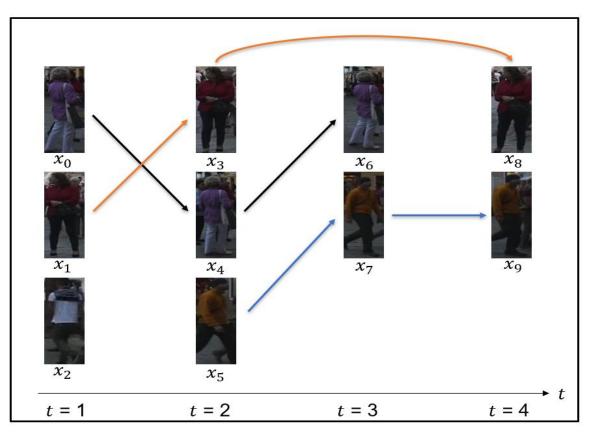
From Certain to Uncertain: Toward Optimal Solution for Offline Multiple Object Tracking

<u>K. Zhao¹</u>, T. Imaseki¹, H. Mouri¹, E. Suzuki², T. Matsukawa²
1. Tokyo University of Agriculture and Technology, Japan
2. Kyushu University, Japan 2021/1/14 ICPR 2020

Offline multiple object tracking

assigning identities for detected objects across a series of frames

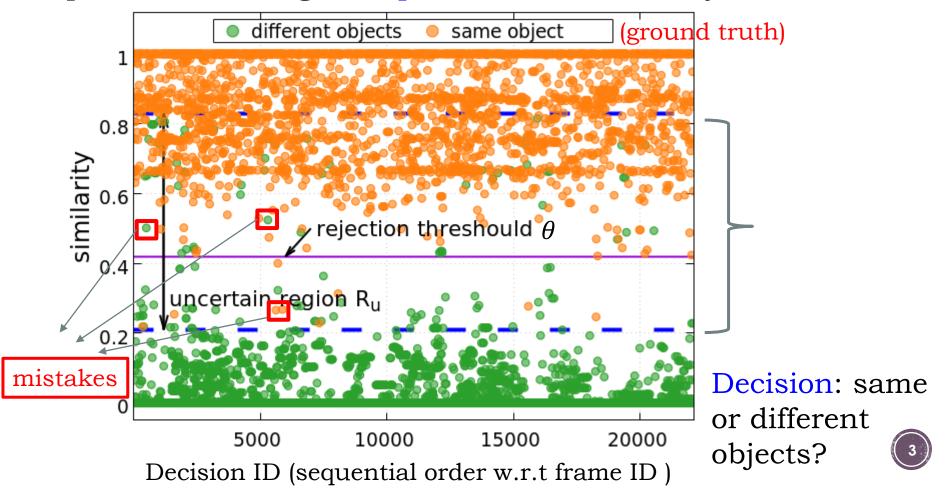


same or different objects? -> affinity measure

Uncertain region & early mistake issues

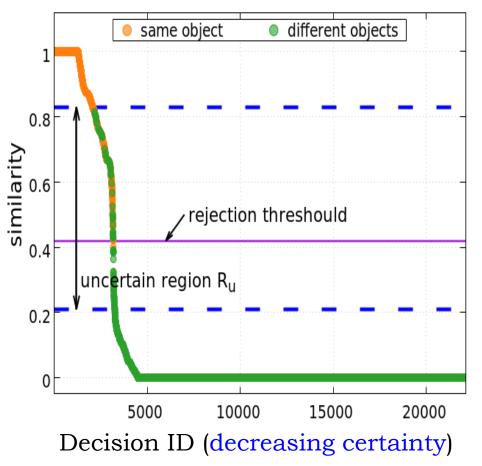
• imperfect affinity measure -> uncertain region -> threshold θ

• sequential tracking with pre-decided θ -> early mistakes

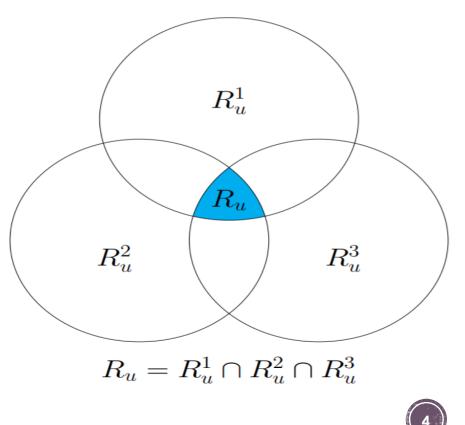


Ideas to reduce early mistakes & uncertain region

tracking from certain to uncertain



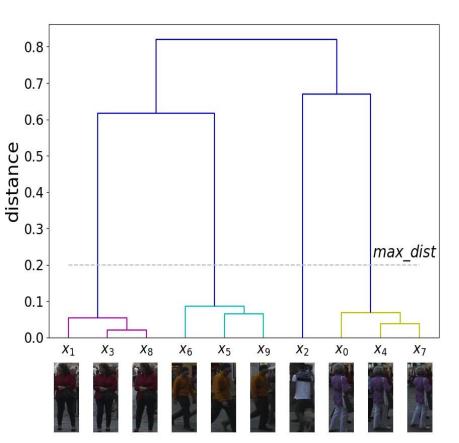
ensemble multiple tracking experts



 R_u^k : uncertain region of kth expert

Proposal: implementing the idea of tracking from certain to uncertain

Agglomerative Hierarchical Clustering (AHC, [Day and Edelsbrunner, 84]): grouping similar observations into clusters



$(x_3) + (x_8)$	0.02
(~3) 1 (~8)	0.02

$$(x_4) + (x_7)$$
 0.04

$$(x_1) + (x_3, x_8)$$
 0.06

$$(x_5) + (x_9)$$
 0.07

$$(x_0) + (x_4, x_7)$$
 0.07

$$(x_6) + (x_5, x_9)$$
 0.09

$$(x_1, x_3, x_8) + (x_5, x_6, x_9)$$
 0.62

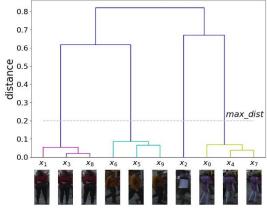
$$(x_2) + (x_0, x_4, x_7)$$
 0.67

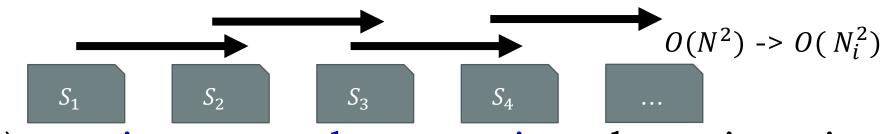
$$(x_1, x_3, x_5, x_6, x_8, x_9) + (x_0, x_2, x_4, x_7)$$
 0.82

Pros: 1) merging tracks with strictly increasing distance, 2) considering all tracks in each iteration

Adapting AHC for object tracking

 \blacksquare dividing sequence *S* into *S*₁, *S*₂,..

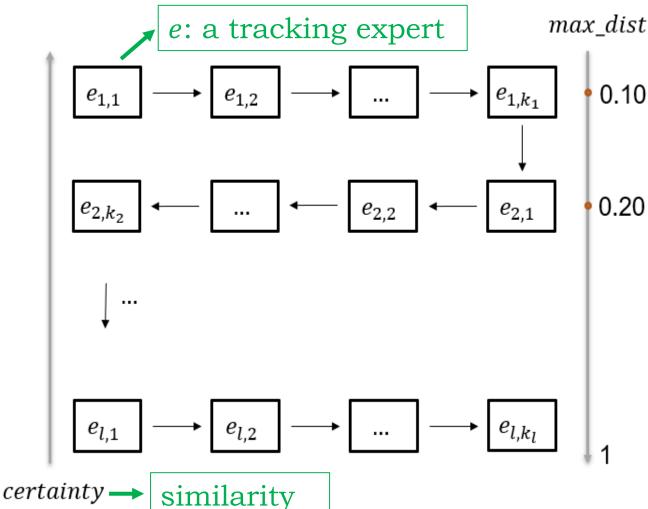




2) spatiotemporal constraint: detections in the same image should not belong to the same track

building cannot-link constraints

AHC with ensemble of tracking experts (AHC_ETE)



0.7-0.6-0.5-0.5-0.3-0.2-0.1-0.0x₁ x₃ x₈ x₆ x₅ x₉ x₂ x₀ x₄ x₇ 0.1-0.0-0.2-0.1-0.0-0.2-0.1-0.0-0.2-0.1-0.0-0.2-0.1-0.0-0.2-0.1-0.0-0.2-0.2-0.1-0.1-0.1-0.2-0.2-0.1-0.2-0.2-0.1-0.2

incrementally build the dendrogram with each expert contributing its most certain mergings in turn

need to define *es*; distance measure, max_*dist* for each *e*

Defined distance measures

an integration of appearance, motion and temporal distances

$$dist(T_u, T_v) = dist_{major}(T_u, T_v) * F_1(\cdot) * F_2(\cdot) * \cdots$$

major distance measure (appearance)

filter for other distance measures (motion, temporal)

where

 $F(v, condition) = \begin{cases} 1, & \text{if } v \text{ satisfies } condition \\ inf, & \text{else} \end{cases}$ else

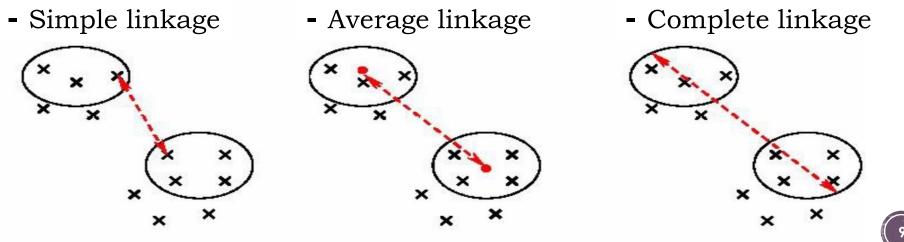
for imposing cannot-link constraints

Appearance distance for two detections x_i, x_j : $dist_{appe}(x_i, x_j) = 1 - \frac{a_i^T a_j}{\|a_i\| \|a_j\|}$

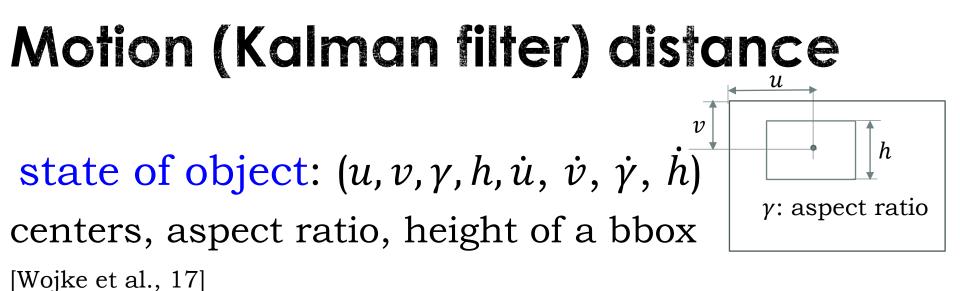
https://www.cs.colostate.edu/~cs44 0/fall2015/more_progress/DCNN.pdf

where a_i extracted CNN feature vector (128-dim, output of the penultimate layer) of x_i

for two tracks T_u , T_v



https://medium.com/datadriveninvestor/hierarchical-clustering-514b9d1aa2c1



$$dist_{kf}(T,x) = \sqrt{(y-\hat{y})^T \Sigma^{-1}(y-\hat{y})}$$

T: a track; *x*: a single detection;

- *y*: detection transferred to the measurement space;
- \hat{y} : prediction of Kalman Filter.

Temporal distance

$$dist_{temp}(T_u, T_v) = \begin{cases} |\Gamma_u \cap \Gamma_v| - |\Gamma_u \cup \Gamma_v| & \text{if } \Gamma_u \cap \Gamma_v \neq \emptyset \\ min(\Gamma_v) - max(\Gamma_u) & \text{elseif } max(\Gamma_u) < min(\Gamma_v) \\ min(\Gamma_u) - max(\Gamma_v) & \text{elseif } max(\Gamma_v) < min(\Gamma_u) \\ 0 & \text{else} \end{cases}$$

 Γ_k : set of frame IDs for detections in track T_k

frame IDs overlap \rightarrow negative value;

one track appears later than another \rightarrow closest frame gap;

no overlap & not earlier, later tracks $\rightarrow 0$

Defined tracking experts

1. Preprocessing: build T_{fp} for detections with score ≤ 0.3 or suppressed by NMS with threshold 0.1; impose cannotlinks for T_{fp} , i.e., for any track T_k , $dist(T_k, T_{fp}) = inf$ 2. Connecting detections to tracks: track with complete linkage (expert e_1), then single linkages (e_2 and e_3) \rightarrow remove cannot-links on T_{fp} and track with weak constraints (e_4 and e_5)

3. Post-processing: remove T_k if $|T_k| < 3$

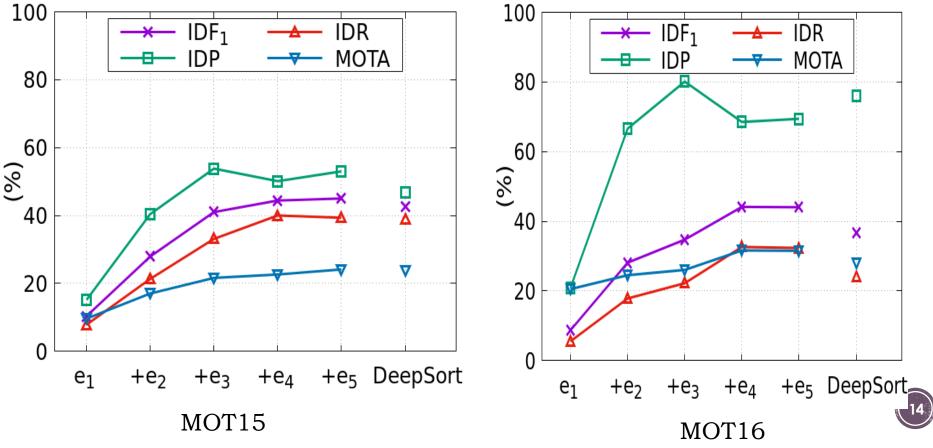
E	$dist_{appe}$	$F_1(temp)$	$F_2(kf)$	$F_3(appe)$	max_dist
e_1	complete	≥ 0	complete:< 9.5	-	0.10
e_2	single	≥ 0	-	-	0.05
e_3	single	≥ 0	complete:< 9.5	-	0.10
e_4	single	≥ 0	complete: < 9.5	-	0.10
e_5	single	≥ 0	average:< 9.5	complete: ≤ 0.30	0.20

Design of experiments

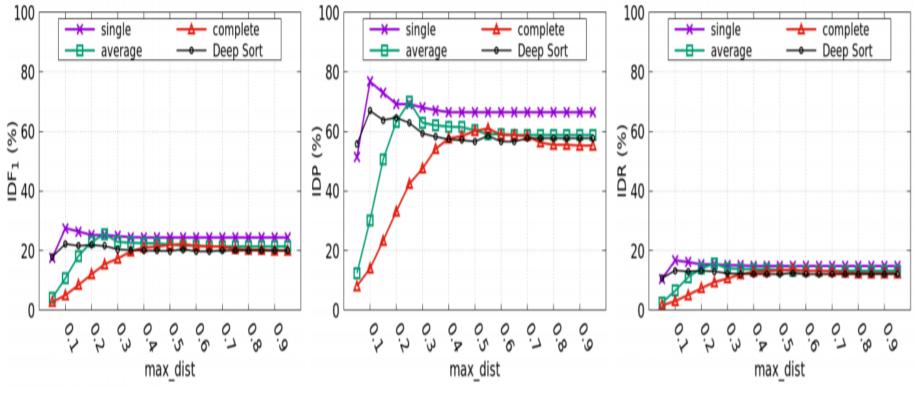
- Dataset: MOT15, MOT16 [Milan et al., 16] training sequences
- Evaluation metrics: multiple object tracking accuracy (MOTA [Bernardin and Stiefelhagen, 08]), identification precision (IDP), recall (IDR), corresponding F1 score (IDF1 [Ristani et al., 16])
- Benchmark method: Deep Sort [Wojke et al., 17] (same features, appearance and motion distances)

Effects of merging order

- our method generally outperforms Deep Sort [Wojke et al., 17]
- IDF1s, IDPs, IDRs and MOTAs generally increase as more experts integrated



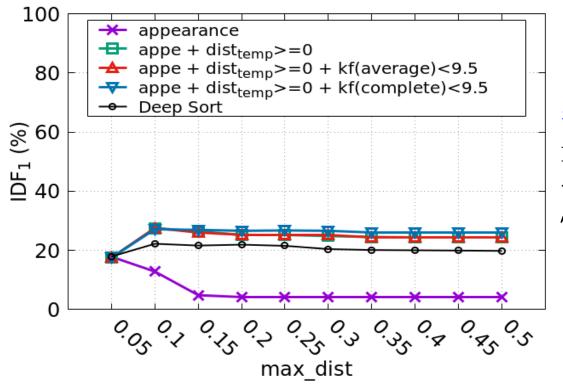
Effects of different linkages best IDF1s, IDPs and IDRs differ; **certain region** of single < average < complete linkage



standard AHC [Day and Edelsbrunner, 84] based tracking; Test data: MOT16-02

Effects of imposing cannot-link constraints

only appearance -> deteriorates significantly when max_dist increases for single linkage; with temporal, Kalman Filter constraints -> IDF1 generally increases



standard AHC [Day and Edelsbrunner, 84] based tracking; Test data: MOT16-02

Conclusions

Tackling two typical issues for object tracking: 1) uncertain region, 2) early mistakes

Proposed AHC_ETE: tracking from certain to uncertain, ensemble multiple tracking experts

(a general framework for various distance measures and tracking experts)

Code: 🖟 <u>cyoukaikai</u> / ahc_ete GitHub

Limitations and future work

 accepted all the progress made by the earlier tracking experts as the starting point of the later ones

-> proposed algorithm sensitive to the ordering of experts

further experiments comparing with the state-of-the-art methods needed

