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Offline multiple object tracking

assigning identities for detected objects across
a series of frames
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Uncertain region & early mistake
issues

= imperfect affinity measure -> uncertain region -> threshold 6

= sequential tracking with pre-decided 0 -> early mistakes
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ldeas to reduce early mistakes &
uncertain region

tracking from certain to ensemble multiple
uncertain tracking experts
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Proposal: implementing the idea of
tracking from certain to uncertain

Agglomerative Hierarchical Clustering (AHC, [pay and
Edelsbrunner, 84]): grouping similar observations into
clusters
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Adapting AHC for object tracking

Cons of AHC:
1) memory complexity: O(N#4), °

where N: #detections U A B O

=) dividing sequence S into Sy, S,,... """""
— —p O(N?) -> O( N?)
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2) spatiotemporal constraint: detections in
the same image should not belong to the
same track

) building cannot-link constraints
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AHC with ensemble of tracking
experts (AHC_ETE) ggz

e a tracking expert max_dist

max_dist
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Defined distance measures

an integration of appearance, motion and
temporal distances

———————————————————————————————————————————————

_________________________________________________________

/ \/

major distance filter for other distance
measure measures (motion,
(appearance) temporal)
Where . . " [} "
. 1, if v satisfies condition
F (v, condition) =1 .
inf, else

for imposing cannot-link constraints ©



Appedarance distance

for two detections x;, x;:

T
a' a]

dlStappe (Xi, x]) — 1 “ al “ H a] H o/fauzo15/rrioré_progresé/DCNN pdf

where aq; extracted CNN feature vector (128-dim,
output of the penultimate layer) of x;

for two tracks Ty, T,

- Simple linkage - Average linkage - Complete linkage

https://medium.com/datadriveninvestor/hierarchical-clustering-514b9d1laa2cl



Motion (Kalman filter) distance

D

state of object: (w,v,y, h i, v, ¥, h)

centers, aspect ratio, height of a bbox

h

y: aspect ratio

[Wojke et al., 17]

distier (T,x) =/ (y =927y = 9)
T: a track; x: a single detection;

y: detection transferred to the measurement
space;

y: prediction of Kalman Filter.
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Temporal distance

distiemp Tus Ty) =

Wi = R, W, O, 20

min(l,) — max(l,) elseif max(l',) < min(T,)
min(l,) — max(l,) elseif max(l,) < min(I',)

0 else

\

[},: set of frame IDs for detections in track Tj

frame IDs overlap — negative value;

one track appears later than another — closest
frame gap;

no overlap & not earlier, later tracks — O ©



Defined tracking experts

1. Preprocessing: build T, for detections with score < 0.3
or suppressed by NMS with threshold 0.1; impose cannot-
links for Ty, i.e., for any track T, dist(Tk, Tfp) = inf

2. Connecting detections to tracks: track with complete
linkage (expert e;), then single linkages (e, and e;) —

remove cannot-links on T D and track with weak
constraints (e, and ex)

3. Post-processing: remove Ty, if |T}| < 3

E| distoppe| F1(temp) Fo(kf) Fs(appe) max_dist
e1| complete >0 complete: < 9.5 - 0.10
ea| single >0 - - 0.05
ez| single >0 complete: << 9.5 - 0.10
eq| single >0 complete: < 9.5 - 0.10
e5|  single >0 average: < 9.5 complete: < 0.30 0.20




Design of experiments

=Dataset: MOT15, MOT16 |milan et aL, 16]
training sequences

Evaluation metrics: multiple object
tracking accuracy (MOTA [Bernardin and Stiefelhagen,
08]), identification precision (IDP), recall (IDR),
corresponding F1 score (IDF1 [Ristani et al., 16])

Benchmark method: Deep Sort (wojke et a1,
17] (same features, appearance and motion
distances)



Effects of merging order

=our method generally outperforms Deep Sort
[Wojke et al., 17]

= IDF1s, IDPs, IDRs and MOTAs generally
increase as more eXperts mtegrated
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Effects of different linkages
best IDF1s, IDPs and IDRs differ;

certain region of single < average < complete
linkage
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Effects of imposing cannot-link
constraints

only appearance -> deteriorates significantly when
max _dist increases for single linkage;
with temporal, Kalman Filter constraints -> IDF1

generally increases
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Conclusions

Tackling two typical issues for object
tracking: 1) uncertain region, 2) early

mistakes

T

Proposed AHC_]

<. tracking from certain to

uncertain, ensemble multiple tracking

experts

(a general framework for various distance
measures and tracking experts)

Code: B cyoukaikai/ahc_ete

GitHub @



Limitations and future work

=accepted all the progress made by the
earlier tracking experts as the starting
point of the later ones

-> proposed algorithm sensitive to the
ordering of experts

=further experiments comparing with the
state-of-the-art methods needed



