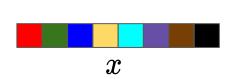
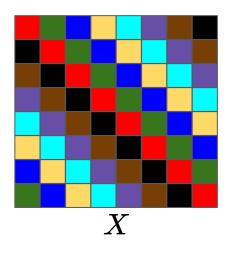


Adaptive Context-Aware Discriminative Correlation Filters for Robust Visual Object Tracking

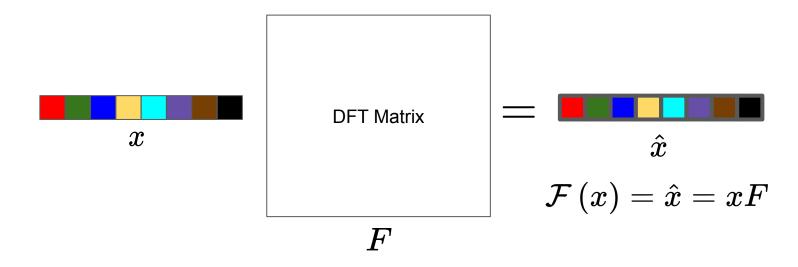
Tianyang Xu, Zhen-Hua Feng, Xiao-Jun Wu, Josef Kittler
University of Surrey
Jiangnan University
tianyang.xu@surrey.ac.uk

Task Definition



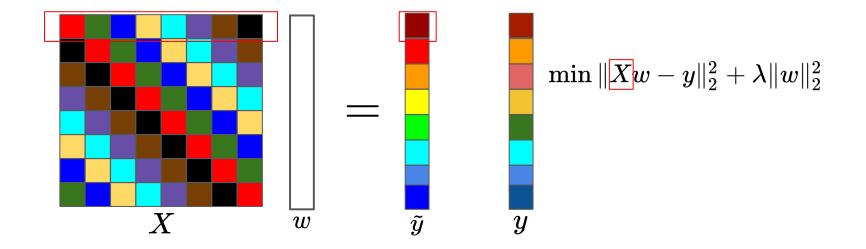


automatically track a target in a video sequence by predicting its location and scale


original vector

circulant matrix

Gray, Robert M. "Toeplitz and circulant matrices: A review." Foundations and Trends® in Communications and Information Theory 2.3 (2006): 155-239.


Stockham Jr, Thomas G. "High-speed convolution and correlation." Proceedings of the April 26-28, 1966, Spring joint computer conference. ACM, 1966.

$$\operatorname{diag}\left(\hat{x}
ight)=\operatorname{diag}\left(xF
ight)=F^{H}XF$$
 $X=F\operatorname{diag}\left(\hat{x}
ight)F^{H}$

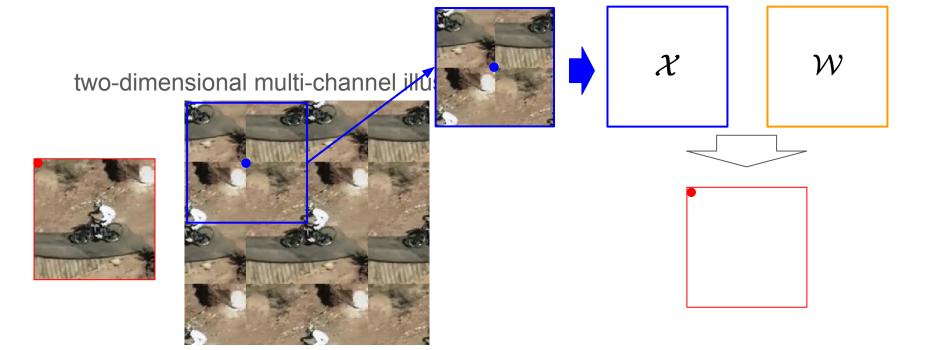
$$|X^HX| = F ext{diag} \; (\hat{x}^* \odot \hat{x}) \, F^H$$

$$\min \|Xw - y\|_2^2 + \lambda \|w\|_2^2$$

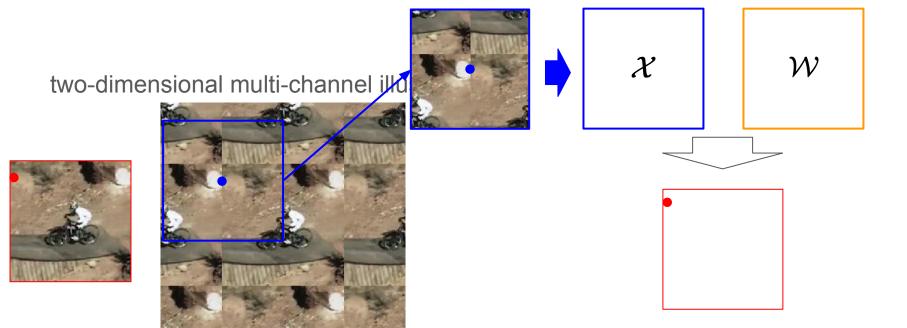
$$w = \left(X^TX + \lambda I
ight)^{-1}X^Ty - egin{array}{c} X^HX = F ext{diag } (\hat{x}^*\odot\hat{x})\,F^H \ X = F ext{diag } (\hat{x})\,F^H \end{array}$$

$$\hat{w} = rac{\hat{x}^* \odot \hat{y}}{\hat{x}^* \odot \hat{x} + \lambda}$$

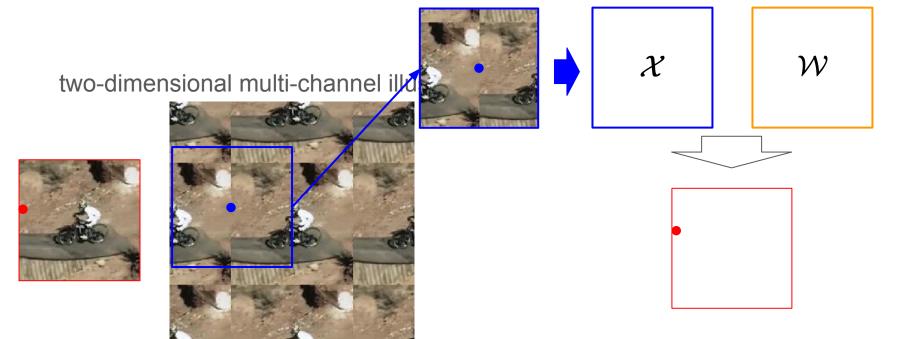
the frequency domain element-wise multiplication element-wise division

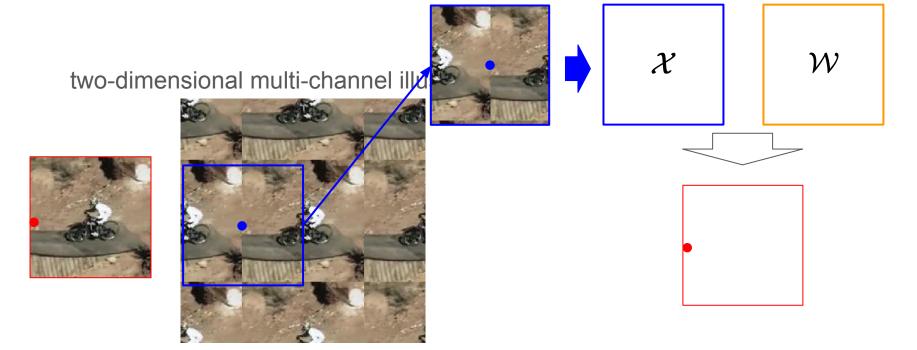

Henriques, João F., et al. "High-speed tracking with kernelized correlation filters." IEEE transactions on pattern analysis and machine intelligence 37.3 (2015): 583-596.

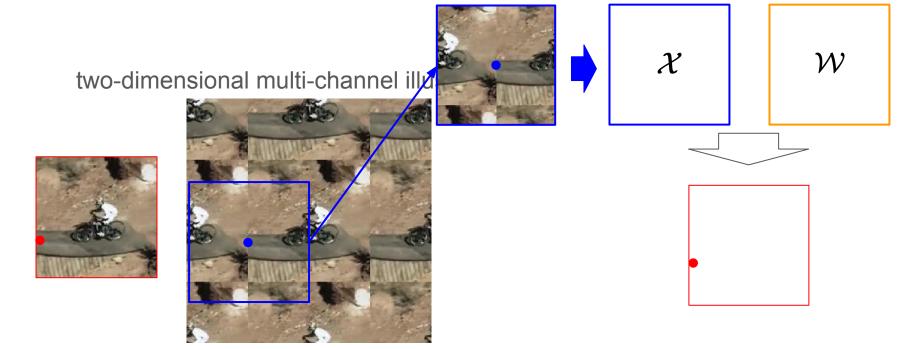
Advantages:

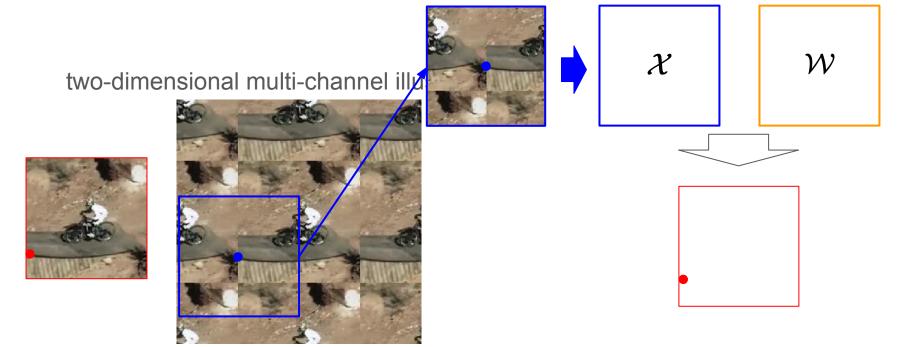

- 1. data augmentation
- 2. superior efficiency

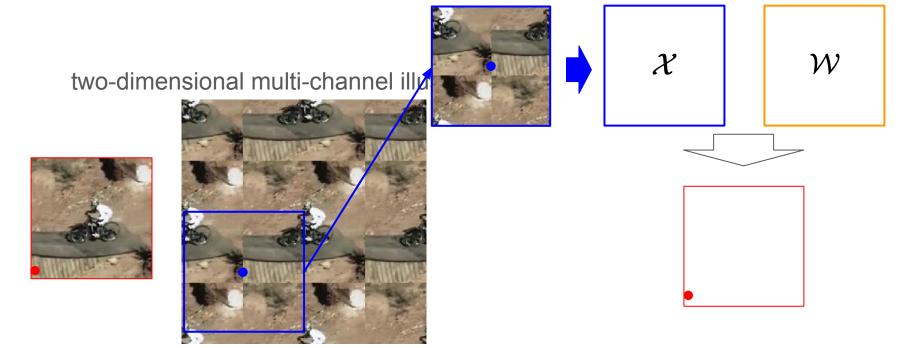
$$egin{aligned} 1 &
ightarrow n \ \mathcal{O}\left(n^3
ight)
ightarrow \mathcal{O}\left(n\log n
ight) \end{aligned}$$

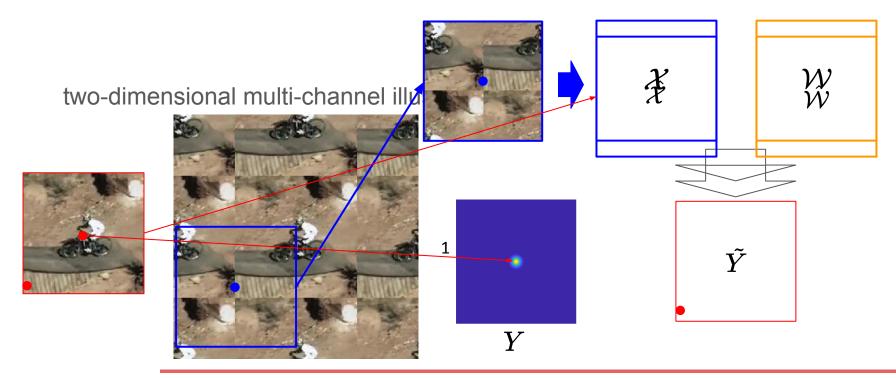


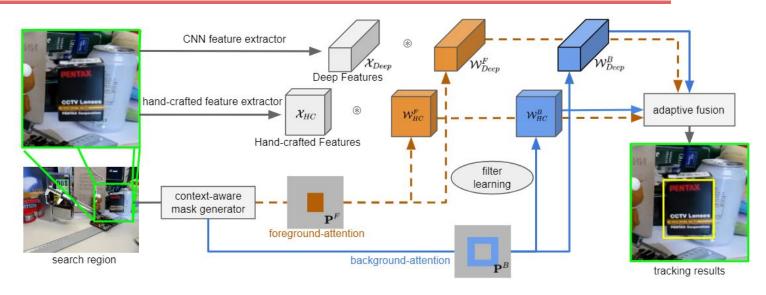












ACA-DCF - Motivation

Explore the foreground / background context-aware clues within the hand-crafted and deep feature representations to enhance discrimination and robustness.

ACA-DCF - Framework

The proposed adaptive context-aware DCF method using both hand-crafted and deep features. The proposed context-aware mask generator is instrumental in applying foreground-background attention to the learned filters. The corresponding responses are adaptively fused to generate the final result.

ACA-DCF - Context-aware masks

We design our context-aware attention masks with two complementary components, the foreground-attention mask \mathbf{P}^F as:

$$p^F_{ij} = egin{cases} 1 imes 10^{-3} & (i,j) \in \mathcal{F} \ 1 & (i,j)
otin \mathcal{F} \end{cases}$$

and the background-attention mask \mathbf{P}^{B} as:

$$p^B_{ij} = egin{cases} 1 imes 10^{-3} & (i,j) \in \mathcal{B} \ 1 & (i,j)
otin \mathcal{B} \end{cases}$$

where p_{ij} is the *i*-th row *j*-th column element of \mathbf{P} . \mathcal{F} and \mathcal{B} are the target region and surrounding region.

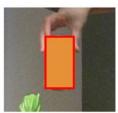


Illustration of the proposed complementary attention mechanism based context-aware mask generator: (a) target bounding box; (b) foreground-attention mask; and (c) background-attention mask.

ACA-DCF - Formulation

To better illustrate the spatial information, we formulate our ACA-DCF in a 2D and multi-channel manner:

$$\min \left\| \sum\limits_{k=1}^{C} \mathbf{X}^k * \mathbf{W}^k - \mathbf{Y}
ight\|_F^2 + \lambda \sum\limits_{k=1}^{C} \left\| \mathbf{P} \odot \mathbf{W}^k
ight\|_F^2,$$

where $\mathbf{X}^k \in \mathbb{R}^{N \times N}$ is the k-th channel representation of a 3-rd order feature tensor $\mathcal{X} \in \mathbb{R}^{N \times N \times C}$, $\mathbf{W}^k \in \mathbb{R}^{N \times N}$ is the k-th corresponding filter that is a slice of the filter tensor $\mathcal{W} \in \mathbb{R}^{N \times N \times C}$, and $\mathbf{P}^{N \times N}$ is the designed spatial regularisation mask.

ACA-DCF - Optimization

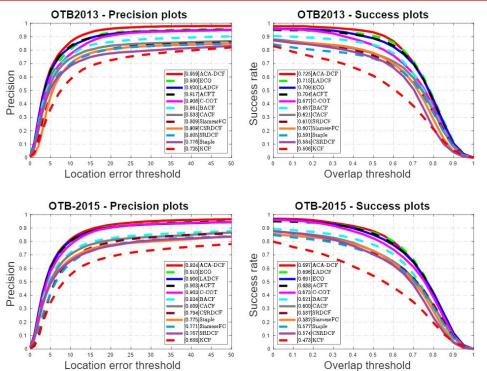
We use the augmented Lagrange method to optimise the objective function.

We use slack variable w' = w (for each k, $\mathbf{w}'^k = \mathbf{w}^k$) and construct the following Lagrange function:

$$\mathcal{L} = \left\| \sum_{k=1}^{C} \mathbf{X}^{k} * \mathbf{W}^{k} - \mathbf{Y} \right\|_{F}^{2} + \lambda \sum_{k=1}^{C} \left\| \mathbf{P} \odot \mathbf{W}'^{k} \right\|_{F}^{2} + \frac{\mu}{2} \sum_{k=1}^{C} \left\| \mathbf{W}^{k} - \mathbf{W}'^{k} + \frac{\mathbf{\Gamma}^{k}}{\mu} \right\|_{F}^{2},$$

$$\begin{cases} \hat{\mathbf{w}}_{i,j} = \left(\mathbf{I} - \frac{\hat{\mathbf{x}}_{i,j} \hat{\mathbf{x}}_{i,j}}{\mu/2 + \hat{\mathbf{x}}_{i,j} \hat{\mathbf{x}}_{i,j}} \right) \mathbf{g} \\ \mathbf{W}'^{k} = (\mathbf{1} - \mathbf{P}) \odot \frac{\mu \mathbf{W}^{k} + \mathbf{\Gamma}^{k}}{2\lambda + \mu} \\ \Gamma = \Gamma + \mu \left(\mathcal{W} - \mathcal{W}' \right) \end{cases}$$

$$\mathbf{g} = \left(\hat{\mathbf{x}}_{i,j} \hat{\mathbf{y}}_{i,j} + \mu \hat{\mathbf{w}}'_{i,j} - \mu \hat{\gamma}_{i,j} \right) / \mu$$



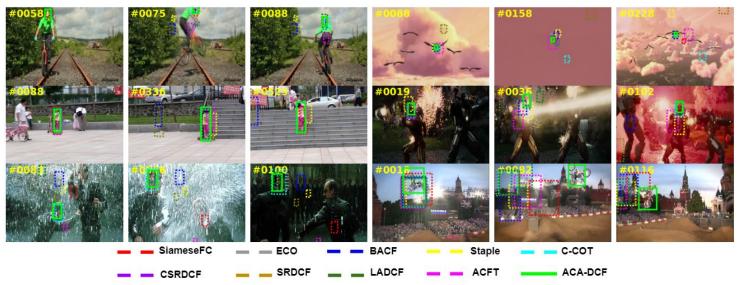
ACA-DCF - Optimization

Solution:

$$egin{aligned} \hat{\mathbf{w}}_{i,j} &= \left(\mathbf{I} - rac{\hat{\mathbf{x}}_{i,j}\hat{\mathbf{x}}_{i,j}}{\mu/2 + \hat{\mathbf{x}}_{i,j}\hat{\mathbf{x}}_{i,j}}
ight)\mathbf{g} \ \mathbf{W}'^k &= (\mathbf{1} - \mathbf{P})\odotrac{\mu\mathbf{W}^k + \mathbf{\Gamma}^k}{2\lambda + \mu} \ \Gamma &= \Gamma + \mu\left(\mathcal{W} - \mathcal{W}'
ight) \end{aligned}$$
 $\mathbf{g} = \left(\hat{\mathbf{x}}_{i,j}\hat{y}_{i,j} + \mu\hat{\mathbf{w}}_{i,j}' - \mu\hat{\gamma}_{i,j}
ight)/\mu$

Evaluation on OTB2013 and OTB2015, using the precision plots with DP in the legend and the success plots with AUC in the legend.

	STAPLE+	EBT [34]	DDC	Staple [17]	MLDF	SSAT	TCNN [35]	C-COT [21]	ACA-DCF
EAO	0.286	0.291	0.293	0.295	0.311	0.329	0.327	0.331	0.385
Accuracy	0.559	0.465	0.542	0.547	0.492	0.579	0.555	0.541	0.581
Robustness	0.37	0.25	0.34	0.38	0.23	0.29	0.27	0.24	0.21


Tracking results on VOT2016.

		DEF	IPR	IV	OPR	OV	SV	LR
	DSST [36] [TPAMI-17]	56.2/40.0	70.7/47.4	73.9/49.6	65.8/43.7	48.1/36.5	64.3/39.5	67.8/30.5
	Staple [17] [CVPR-16]	72.9/54.4	75.3/54.4	76.9/58.8	72.4/52.8	66.1/48.1	72.7/52.5	69.5/39.6
	SRDCF [15] [ICCV-15]	70.7/53.1	69.6/51.7	74.5/58.9	71.3/53.4	58.2/45.8	73.1/55.4	74.2/51.0
	BACF [26] [ICCV-17]	77.8/58.2	79.5/58.4	83.0/64.2	78.7/58.4	76.5/55.2	77.4/57.6	79.5/51.4
	CFNet [24] [CVPR-17]	69.6/50.8	76.8/57.2	70.5/54.9	74.1/54.7	53.6/42.3	72.6/55.0	81.0/58.6
	CSRDCF [27] [CVPR-17]	73.5/52.4	73.6/51.9	73.2/53.9	72.1/51.5	65.1/49.6	75.0/52.8	81.3/45.1
Mean	ACFN [37] [CVPR-17]	77.2/53.5	78.0/54.3	78.8/56.7	77.7/54.3	67.3/49.7	76.0/54.8	81.8/51.5
DP/AUC	STAPLE_CA [38] [CVPR-17]	76.0/56.6	80.6/57.4	81.6/61.3	75.8/55.2	69.7/50.9	75.3/54.1	81.9/44.8
(%/%)	TRACA [39] [CVPR-18]	76.9/56.1	80.6/57.6	84.1/62.2	82.3/59.3	68.0/53.4	76.1/55.2	86.0/50.2
	CREST [25] [ICCV-17]	77.6/56.9	85,3/61.7	87.6/64.4	84.2/61.5	73.4/56.6	78.6/57.2	86.6/47.3
	SiamFC [4] [ECCV-16]	69.0/50.6	74.2/55.7	73.6/56.8	75.6/55.8	66.9/50.6	73.5/55.2	90.0/61.8
	MetaT [40] [ECCV-18]	83.8/62.0	87.7/63.5	86.4/63.4	85.2/62.7	72.3/56.0	80.3/58.2	90.1/47.2
	MCPF [41] [TPAMI-18]	81.6/57.0	88.8/62.0	88.1/62.8	86.7/61.9	76.4/55.3	86.2/60.3	96.3/58.7
	C-COT [21] [ECCV-16]	85.9/61.4	87.7/62.7	88.4/68.2	89.9/65.2	89.5/64.8	88.1/65.4	97.5/62.9
	ECO [18] [CVPR-17]	85.9/63.3	89.2/65.5	91.4/71.3	90.7/67.3	91.3/66.0	87.9/66.6	88.2/59.1
	LADCF [13] [TIP-19]	87.2/65.2	88.3/65.9	89.0/70.5	90.4/68.2	91.0/67.2	88.2/67.0	87.9/61.7
	ACA-DCF	89.3/64.8	93.1/67.8	93.3/72.6	91.8/68.0	94.0/68.0	90.3/68.1	99.6/70.7

The DP and AUC results on OTB2015, parameterised by 7 attributes.

Examples of qualitative tracking results on challenging sequences (Left column top to down: Biker, Girl2, and Matrix. Right column top to down: Bird1, Ironman, and MotorRolling). The colour bounding boxes denote the results of SiameseFC, ECO, BACF, Staple, C-COT, CSRDCF, SRDCF, LADCF, ACFT, and ACA-DCF, respectively.

Conclusion

We improve the DCF formulation by designing a novel adaptive context-aware mechanism.

- -The information contents of a target and its surroundings are analysed by the proposed complementary foreground-background attention mechanism.
- The two sources of information are fused by a novel adaptive fusion strategy to further improve the robustness with the consideration of the dynamics of target and background appearance variations.
- -The experimental results obtained on well-known benchmarking datasets demonstrate the effectiveness and robustness of our method. It was shown to achieve superior performance over the state-of-the-art visual object tracking algorithms.

Thank you