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Previous work

• Most methods estimate pain at frame-level (PSPI, based on FACS)
• Most methods use deep learning approaches (RNN)
• Few work on sequence-level pain estimation (VAS)
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Proposed Method

Figure 1: Overview of our method for action recognition
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Contributions

• Geometry based approach to estimate self-reported pain
• Facial dynamics based on Gram matrix computation and
trajectory modeling on the Riemannian manifold of positive
semi-definite (PSD) matrices of fixed rank

• The manifold S+(d,n) of PSD matrices is endowed with an
optimized metric for 2D

• A recent curve fitting method is used to smooth trajectories on
the manifold

• The use of Global Alignment Kernel for temporal alignment,
instead of DTW

6



Presentation of our Approach
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Shape Representation

• Each sequence is characterized by a set of landmarks
{Z0, . . . , Zτ}, where τ is the number of frames of the sequence

• Each configuration matrix Zi (1 ≤ i ≤ τ) ∈ Rn×d encodes the
position of n landmarks in d dimensions

• Velocities are computed as the magnitude of the displacement
between two consecutive landmark configurations Zi and Zi+1

• The final facial representation A is the concatenation of the
landmark coordinates and velocities (size 2n)
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Riemannian Geometry

Gram matrix representation as the inner product of each facial
configuration matrix:

G = AAT =
⟨
pi,pj

⟩
, 1 ≤ i, j ≤ 2n . (1)
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Riemannian Geometry

We consider the Riemannian geometry of the space S+(d, 2n) of
2n× 2n PSD matrices of rank d. We define a Riemannian metric,
resulting in the following distance between PSD matrices:

d(Gi,Gj) = tr(Gi) + tr(Gj)− 2tr
((

G
1
2
i GjG

1
2
i

) 1
2
)

(2)

9



Riemannian Geometry

This distance can be expressed in terms of the facial configurations
Ai,Aj ∈ Rm×d

∗ as follows:

d(Gi,Gj) = min
Q∈Od

∥AjQ− Ai∥F (3)

The optimal solution is Q∗ := VUT, where ATi Aj = UΣVT is a singular
value decomposition.

In the specific case of 2D landmarks, the distance can be
reformulated as:

d(Gi,Gj) = tr(Gi) + tr(Gj)− 2
√
(a+ d)2 + (c− b)2 (4)

where ATi Aj =
(
a b
c d

)
.
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Sequence Alignment and Pain Estimation

Global Alignment Kernel (GAK) is used instead of Dynamic Time
Warping for sequence alignment.

• We compute the matrix D that contains the distances between
all the elements of two sequences

• We compute a kernel k using the halved Gaussian Kernel on this
distance matrix D

• We compute the similarity score between two sequences

we define a zeros matrix M of size (τ1 + 1)× (τ2 + 1) with M0,0 = 1 that
will contain the path to the similarity between our two sequences.
The terms of M are computed as:

Mi,j = (Mi,j−1 +Mi−1,j−1 +Mi−1,j) ∗ k(i, j). (5)

The similarity score is the value at M(τ1+1),(τ2+1)
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Sequence Alignment and Pain Estimation

Finally, we build a new matrix K of size nseq × nseq, where nseq is the
number of sequences in the dataset that contains the similarity
scores between all the sequences and is used directly with SVR for
self-reported pain estimation.
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Experimental Results



UNBC-McMaster Shoulder Pain Archive

The UNBC-McMaster Shoulder
Pain Archive [2] contains:
• 200 facial videos
• 25 subjects
• Both sequence-level (VAS)
and frame-level (PSPI) label

(a) (b)

(c) (d)

Figure 2: Example images from the
UNBC-McMaster Shoulder Pain
Archive and their corresponding
landmark coordinates and velocities.

[2] Painful data: The UNBC-McMaster shoulder pain expression archive database 13



UNBC-McMaster Shoulder Pain Archive

VAS Score Number of Sequences
0 35
1 42
2 24
3 20
4 21
5 11
6 11
7 6
8 18
9 10
10 2

Table 1: Distribution of the VAS pain
scores in the UNBC-McMaster
Shoulder Pain Archive

Figure 3: Number of sequences per
subjects in the UNBC-McMaster
Shoulder pain archive dataset.
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Evaluation Protocols

• Leave-One-Sequence-Out
• Leave-One-Subject-Out cross validation (subject-independent)
• 5-folds cross validation (subject-independent)
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Results of our Approach

Protocol % of frames MAE RMSE

Leave-One-Sequence-Out 25% 2.3166 3.1459
100% 2.5291 3.3263

Leave-One-Subject-Out cross validation 25% 2.523 3.2692
100% 2.9176 3.5133

5-fold cross validation 25% 2.4365 3.147
100% 2.7944 3.5088

Table 2: Results of our method with the three different protocols.
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Comparison with State-Of-The-Art

Method Protocol Labels for training MAE
DeepFaceLift [1] 5-fold cross validation VAS 2.30
RNN-HCRF [3] random split VAS & PSPI 2.46
Ours 5-fold cross validation VAS 2.4365

Table 3: Comparison of our method with state-of-the-art results

[1] DeepFaceLIFT: Interpretable Personalized Models for Automatic Estimation of Self-Reported Pain , [3]
Personalized Automatic Estimation of Self-Reported Pain Intensity from Facial Expressions 17
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Conclusion

• We proposed a geometry based approach to estimate
self-reported pain

• Method based on facial landmarks for anonymity
• Results can be easily interpreted
• Competitive with state-of-the-art results

Contact: benjamin.szczapa.etu@univ-lille.fr
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