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Introduction



Problem definition

Trajectory forecasting is the field of research that deals with predicting the future

trajectory of agents (e.g. people, vehicles, etc.) given a brief history of their past

positions.



Applications

• Autonomous driving: self-driving vehicles and autonomous agents can take

advantage of likely predictions to better plan their moves and avoid collisions

• Surveillance: surveillance systems can leverage accurate predictions to increase

the quality of tracking and improve the crowd control

• Sports: in competitive settings such as sports, predicting the next moves of the

opposing team can represent a concrete advantage in tactical analysis



Datasets



Stanford Drone Dataset

Stanford Drone Dataset1 major highlights:

• Top-down videos recorded by a hovering drone

• 8 different scenarios from a college campus

• Several interacting agents (pedestrians, bikes,

cars, etc.)

• Trajectory composed of a series of (x , y)

absolute coordinates

• Real-world reference system (i.e. meters)

1
Robicquet et al. ”Learning Social Etiquette: Human Trajectory Prediction In Crowded Scenes”, In ECCV, 2016



SportVU NBA Dataset

NBA dataset1 major highlights:

• Top-down view of the court

• 10 agents per scene: 5 defenders, 5 attackers

• Complex dynamics: rules, tactics, opponents

• Trajectory composed of a series of (x , y)

absolute coordinates

• Real-world reference system (i.e. feet)

1
SportVU - STATS Perform, https://www.statsperform.com/team-performance/basketball/optical-tracking/

https://www.statsperform.com/team-performance/basketball/optical-tracking/


Baseline



Variational Recurrent Neural Network

Our baseline is represented by the Variational Recurrent Neural Network1: the

architecture comes from the union of a Recurrent Neural Network2 and a generative

model (the Variational Auto-Encoder3)

1
Chung et al. ”A Recurrent Latent Variable Model for Sequential Data”, In NIPS, 2015

2
Cho et al. ”Learning Phrase Representations using RNN Encoder-Decoder for Statistical Machine Translation”, In EMNLP, 2014

3
Kingma and Welling. ”Auto-Encoding Variational Bayes”, In ICLR, 2014



Variational Recurrent Neural Network

VAEs are excellent generative models that allow us to produce multiple future

outcomes given the same input, in perfect compliance with the multi-modal nature

of human motion.

However, without further solutions, consecutive generations are totally independent: in

our case, the predicted positions of a same trajectory would not be correlated.



Variational Recurrent Neural Network

By conditioning the generation on the hidden state of a recurrent cell that

watches the sequence of inputs that are given to the network. This way, the VRNN

can correlate the future samples predicted by the VAE along the temporal axis, thus

recovering the useful patterns that characterise the input data.



Variational Recurrent Neural Network

Pros:

• Captures the multi-modal nature of human movement

• Produces future generations in coherence with past positions

Cons:

• Predicts every trajectory independently

• It does not consider agents that share the same scene
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Attentive VRNN



Attentive VRNN (A-VRNN)

By sharing pedestrians’ information across the agents in the same scene, every agent

becomes aware of the others.

⇒ we choose to share the hidden states ht of the different agents



Attentive VRNN (A-VRNN)

We treat the pedestrian space as an undirected fully-connected graph where

every node (agent) is described by its hidden state ht .
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To describe the (spatial) relationships between the nodes, we employ a

similarity-based adjacency matrix.



Attentive VRNN (A-VRNN)

This way, we can exploit a Graph Attention Network1 to recombine the hidden

states at each node, thus providing the subjects with neighbourhood information.

𝒉𝑘,𝑝

𝒉′𝑘,𝑝
𝐺𝑟𝑎𝑝ℎ 𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛

𝑁𝑒𝑡𝑤𝑜𝑟𝑘
𝐴𝑠𝑘

𝑠𝑐𝑒𝑛𝑒𝑘

1
Veličković et al. ”Graph Attention Networks”, In ICLR, 2018



Attentive VRNN (A-VRNN)

Pros:

• The agent becomes aware of what the others have done

• By conditioning the network generations on the refined hidden states, we exploit

community information and increase its precision

Cons:

• The model exploits only past information

• It lacks a longer-term view on what could happen in the future
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DAG-Net



Future information: goals (1)

To jointly exploit future information, we additionally condition the VRNN generation

on a new information extracted from ground-truth data: the long-term objective of

the agent.

To this end, we firstly divide the pedestrian space in a regular grid of macro cells.



Future information: goals (2)

The goal gt can be then expressed in spatial terms by one-hot encoding: the goal is the

region of space (cell) that the agent will occupy after a given number of time-steps.

𝑠𝑐𝑒𝑛𝑒𝑘



DAG-Net: Double Graph Attention Neural Network

To collect community information, in a similar fashion as before we employ a (second)

Graph Attention Network that shares the single goals between the agents that are

spatially close to each other.
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Results



Metrics

Average Displacement Error

ADE =

∑
i∈P

∑Tpred

t=0

√
((x̂ it , ŷ

i
t )− (x it , y

i
t ))2

| P | · Tpred
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⇒ average Euclidean distance over entire predicted sequence

Final Displacement Error

FDE =

∑
i∈P

√
((x̂ iTpred

, ŷ iTpred
)− (x iTpred

, y iTpred
))2

| P |
(2)

⇒ Euclidean distance on the last predicted time-step



Results (1) - Ablation

Dataset Model Interact. Goals ADE FDE

VRNN 7 7 9.58 15.83

NBA (atk) A-VRNN 3 7 9.67 15.96

DAG-Net (Our) 3 3 9.18 13.54

VRNN 7 7 7.07 10.62

NBA (def) A-VRNN (Our) 3 7 7.01 10.42

DAG-Net (Our) 3 3 7.01 9.76

VRNN 7 7 0.58 1.17

SDD A-VRNN (Our) 3 7 0.56 1.14

DAG-Net (Our) 3 3 0.53 1.04

Jointly considering past and future information grants more reliable generations than

considering single trajectories or relying only on agents’ past interactions.



Results (2) - SOTA comparison

Model
NBA (atk) NBA (def) SDD

ADE FDE ADE FDE ADE FDE

STGAT1 9.94 15.80 7.26 11.28 0.58 1.11

Social-Ways2 9.91 15.19 7.31 10.21 0.62 1.16

Weak-Supervision3 9.47 16.98 7.05 10.56 - -

Our 8.98 14.08 6.87 9.76 0.53 1.04

Our double-graph solution also allows to advance the current state of the art in

both the urban and the sports settings, proving the model strength in different

environments.
1

Amirian et al. ”Social ways: Learning multi-modal distributions of pedestrian trajectories with GANs”, In CVPR-W, 2019
2

Zhan et al. ”Generating Multi-Agent Trajectories using Programmatic Weak Supervision”, In ICLR, 2019
3

HUang et al. ”STGAT: Modeling Spatial-Temporal Interactions for Human Trajectory Prediction”, In ICCV, 2019



Thank you!

Source code: https://github.com/alexmonti19/dagnet

https://github.com/alexmonti19/dagnet
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