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Bayesian Score Inference (TrueSkill based [1])

T. Minka, R. Cleven, and Y. Zaykov, “Trueskill 2: An improved bayesian skill rating system,” Microsoft, Tech. Rep. MSR-TR-2018-8, March 2018. 16
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Bayesian Score Inference (TrueSkill based)
● Sum-product algorithm using 

expectation propagation via 
moment matching

● k*O(n+t) complexity of inferring the 
scores (k - number of iterations)
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Efficiency considerations
● At every iteration t, there are n(n-1) comparison outcomes to consider. 
● We consider two strategies to improve the speed:

○ Selective EIG evaluations
○ Batch mode with Minimum Spanning Tree (MST)
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Batch Mode
● Vertices are conditions
● Edges are possible comparisons
● Weights are inverse of the expected 

information gain for comparison
● Batch - comparisons forming edges in 

the minimum spanning tree (MST) [2]

[2] J. Li, R. Mantiuk, J. Wang, S. Ling, and P. Le Callet, “Hybrid-MST: A 
hybrid active sampling strategy for pairwise preference aggregation,” 
NIPS, 31st Conference on Neural Information Processing Systems, 
2018.
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Summary
● Current methods are sub-optimal, relying on partial update of the posterior distribution;
● ASAP computes the full posterior update, crucial to achieving highest accuracy; 
● ASAP computes EIG for most informative pairs, reducing the computational cost by up to 80%;
● ASAP selects batches using a minimum spanning tree method.

Code: https://github.com/gfxdisp/asap
Contact: am2442@cam.ac.uk
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