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Problem overview - Inferring Scale
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roblem overview
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Motivation

Pairwise comparisons are often used in crowdsourcing.
Drawback - for n conditions there are n(n-1)/2 pairs.
How can we minimize the number of comparisons?

Two types of methods:

o Sorting based (Swiss chess tournament system, Adaptive Rectangular Design (ARD))
o Information gain based - assume data model (Hybrid-MST, Crowd-BT, HR-Active, ASAP)
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Bayesian Score Inference (TrueSkill based [1])

N (ri; vi, o) N(rj;vj,a5) N (7 vi, ag)

- Prior factors -

Score
variables

Prior factors

Score
variables

Difference
factors

Difference
variables

Output
factors

Output
variables

T. Minka, R. Cleven, and Y. Zaykov, “Trueskill 2: An improved bayesian skill rating system,” Microsoft, Tech. Rep. MSR-TR-2018-8, March 2018. 16
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Bayesian Score Inference (TrueSkill based)

Sum-product algorithm using
expectation propagation via
moment matching
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Expected Information Gain (EIG)
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Efficiency considerations
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Efficiency considerations

e At every iteration t, there are n(n-1) comparison outcomes to consider.

e We consider two strategies to improve the speed:
o Selective EIG evaluations
o Batch mode with Minimum Spanning Tree (MST)
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Selective EIG evaluations
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Selective EIG evaluations
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Selective EIG evaluations
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Selective EIG evaluations
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Batch Mode

e \ertices are conditions @

e Edges are possible comparisons
e \Weights are inverse of the expected
information gain for comparison
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Batch Mode

[2] J. Li, R. Mantiuk, J. Wang, S. Ling, and P. Le Callet, “Hybrid-MST: A

Vertices are conditions

Edges are possible comparisons
Weights are inverse of the expected
information gain for comparison
Batch - comparisons forming edges in
the minimum spanning tree (MST) [2]

hybrid active sampling strategy for pairwise preference aggregation,”
NIPS, 31st Conference on Neural Information Processing Systems,

2018.

C2

ETD

C4

40



Monte Carlo Simulation
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Monte Carlo Simulation
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Monte Carlo Simulation

1 standard trial = n(n

-1)/2 comparisons

0-4 O\\:\\\\; [ [ I [ [ [ I [
o\\
0.2 . é 3 S \L\@\ﬂ\ _
Swiss system O
. Quicksort
s 0.1~ - TS-sampling
o ~Crowd-BT “
- HR-active o
Hybrid-MST Toed |
00571, asap “. .
~ASAP-approx M S
AKG g S
0.025 | | | | | | | | | | |
1 2 4 5 6 7 8 9 10 11 12 13 14 15

Standard trial

43



Monte Carlo Simulation

0.4

0.2

0.1

RMSE

0.05

0.025

1 standard trial = n(n-1)/2 comparisons

Swiss system
Quicksort
o TS-sampling
- Crowd-BT
- HR-active
Hybrid-MST
+ ASAP
~ASAP-approx
AKG

| | |

|

|

¢

A Y
x

1

2

3 4 5 6

7

8

9

Standard trial

10 11 12 13 14 15

44



Monte Carlo Simulation

0.4

0.2

0.1

RMSE

0.05

0.025

1 standard trial = n(n-1)/2 comparisons

Swiss system
Quicksort
o TS-sampling
- Crowd-BT
- HR-active
Hybrid-MST
+ ASAP
~ASAP-approx
AKG

| | |

¢

A Y
x

1 2 3

6 7 8 9
Standard trial

10 11 12 13 14 15

45



Monte Carlo Simulation

1 standard trial = n(n-1)/2 comparisons
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Experimental Effort

e Experimental Effort = time to achieve 0.15 RMSE
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Experimental Effort

e Experimental Effort = time to achieve 0.15 RMSE
e Assume 5s decision time
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Experimental Effort
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Summary

Current methods are sub-optimal, relying on partial update of the posterior distribution;

ASAP computes the full posterior update, crucial to achieving highest accuracy;

ASAP computes EIG for most informative pairs, reducing the computational cost by up to 80%;
ASAP selects batches using a minimum spanning tree method.

Code: https://github.com/gfxdisp/asap
Contact: am2442@cam.ac.uk
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