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1. Motivation

Essential Task in SR methods: information missed VS feature mining

* An LDB with fixed depth: non-adaptive match with receptive fields(RFs),
-> Variable depth, increasing layers in LDBs gradually

* Lack of fully feature multiplexing: LDBs and Super LDBs

- Connection

2. Contributions

* Suggest a VLDB, # of conv. layers in an LDB varies to match RFs efficiently

at a pattern of an arithmetic series.

* a nested DID structure by VLDB output reusing & VLDB networking
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Fig.3. The output of different VLDB.



4. Dense In Dense(DID)-Network Structure

DID network: a super RDN, using VLDBs as basic nodes.
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5. Experimental Results

EX1 Study of D & C, numbers DBs & Conv.layers

* Larger D or a larger C benefits PSNRs
* The VLDB effects on improving PSNRs

* Mismatching with the RFs deteriorates PSNRs
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Ex2 Convergence rate of DID and RDN
* Rapid training due to its RF matched advantage.
Ex3 Importance of combination of VLDB & DID

*\/LDBs & DID performed separately = PSNR 1
*Both VLDBs+DID consistently work, combined effects.
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Ex4 Performance comparison with other methods.

* DID has the superior advantage to preserved edges best
* Little weak in vertical details than RCAN
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Ex4 Performance comparison with other methods.

* DID has the superior advantage to preserved edges best

* Little weak In vertical details than RCAN
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6. Conclusion

* We propose a very deep nested dense residual network, VLDBs
and DID structure are core parts.

* VLDBs fully utilize the hierarchical features from each Conv. layer to
extract local features

* DID network makes full use of hierarchical features in layer-wise

and in DB-wise
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