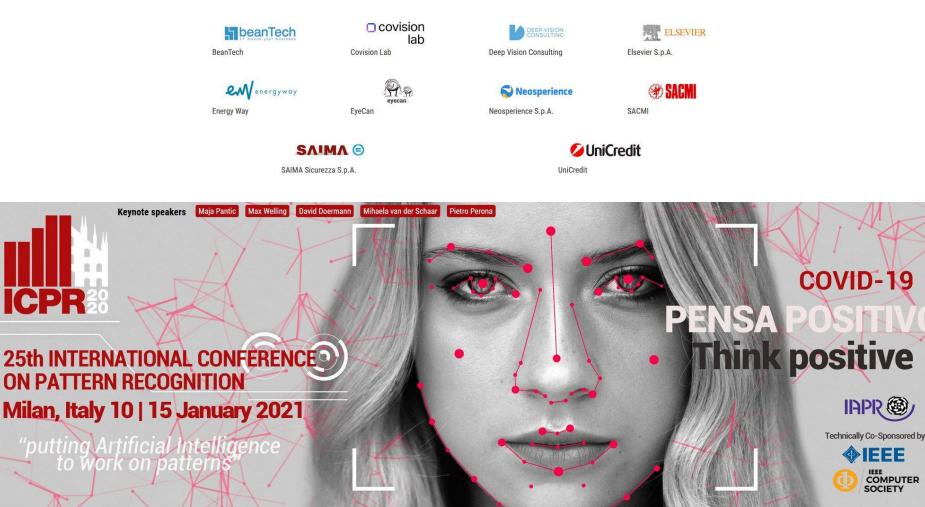
ICPR2020 Corporate Sponsors



Peter Bellmann, Patrick Thiam, and Friedhelm Schwenker Ulm University, Germany

Using Meta Labels for the Training of Weighting Models in a Sample-Specific Late Fusion Classification Architecture

Agenda

- Late Fusion Architectures
- Proposed Approach
- Results
- Conclusion & Future Work

Slide 3/15 Using Meta Labels for the Training of Weighting Models | Peter Bellmann et al. | ICPR 2020 2021/01/14

LATE FUSION ARCHITECTURES

Late Fusion Architectures – Formalisation

- $X \subset \mathbb{R}^d$, $d \in \mathbb{N}$: *d*-dimensional data set
- $\Omega = \{\omega_1, \dots, \omega_c\}, c \ge 2$: class label set
- $m \in \mathbb{N}$: number of feature subsets
- CM_i : classification model that is trained on feature subset *i*
- The outputs of $\{CM_1, \dots, CM_m\}$ are combined for the final prediction
- In general: each *CM_i* is a **strong** model (LF combines *ensembles*)

Late Fusion Architectures – Example

Affect recognition or pain detection tasks with person-specific data

- Audio
- Video
- Physiology

 $\Rightarrow m = 3$

Train 3 strong models in combination with each modality

Slide 6/15 Using Meta Labels for the Training of Weighting Models | Peter Bellmann et al. | ICPR 2020 2021/01/14

PROPOSED APPROACH

Proposed Approach – Basic Idea

- Divide the training subsets X_1, \dots, X_m into
 - T_1, \ldots, T_m : Training Sets
 - V_1 , ..., V_m : Validation Sets
- The output of CM_i on V_i defines the labels for Weighting Model WM_i

$$\tilde{y}_{i,j} := \begin{cases} 1, \text{ if } \operatorname{CM}_i(v_j) \rightsquigarrow y_j, \\ 0, \text{ otherwise.} \end{cases}$$

• The class-support vector for input $x \in \mathbb{R}^d$ is calculated as

$$\mu(x) = \sum_{i=1}^{m} s_i^{(1)}(x) \cdot \mathrm{CM}_i(x)$$

Proposed Approach – Training Phase

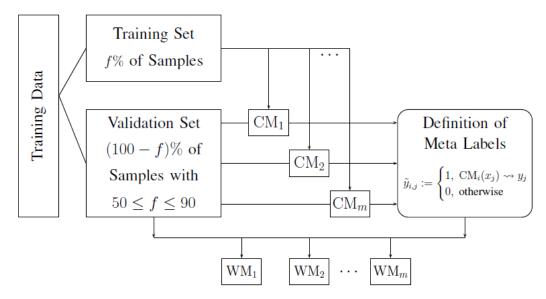


Fig. 2: Training Phase of our Approach - System Diagram. CM_i : Classification model *i*. WM_i : Weighting model *i*. Each model WM_i is trained on the validation set, in combination with an individual vector of corresponding meta labels.

$$\mu(x) = \sum_{i=1}^{m} s_i^{(1)}(x) \cdot \mathrm{CM}_i(x)$$

Slide 9/15 Using Meta Labels for the Training of Weighting Models | Peter Bellmann et al. | ICPR 2020 2021/01/14

RESULTS

Data Sets Overview

Data Set	# Classes	# Samples	# Features	# Channels
BioVid	2	3480	194	3
Mfeat	10	2000	649	6
Arrhythmia	2	452	274	4
Fisher Iris	3	150	4	4

Experimental Settings

- Classifier Choice Bagged Decision Tree (DT) Ensemble
- Classification Models
 - BioVid 200 DTs per Channel
 - Remaining Sets 100 DTs per Channel
- Weighting Models 100 DTs per Channel
- Measure
 Accuracy

Results – Accuracy Performance

TABLE V: Mean accuracy and standard deviation values in %. The best performing method is depicted in bold. CV: Cross Validation. LOPO: Leave-One-Participant-Out. The early fusion corresponds to Breiman's bagging approach.

Data Set	CV	Early Fusion	Late Mean	Our Approach
BVDB	LOPO	81.90 ± 15.2	82.93 ± 16.0	83.94 ± 15.3
Mfeat	20-fold	96.02 ± 1.64	97.60 ± 1.47	98.00 ± 1.34
ARR	20-fold	74.62 ± 7.86	75.15 ± 10.6	76.48 ± 8.93
Iris	10-fold	94.39 ± 4.10	95.33 ± 5.49	96.67 ± 4.71

```
Results – Operational Cost
```

TABLE VI: Averaged training and testing time in s. The faster performing method is depicted in bold.

Approach	BVDB	Mfeat	ARR	Iris
Late Mean	21.8 ± 0.3	12.5 ± 0.3	2.53 ± 0.2	1.45 ± 0.1
Our	20.2 ± 0.3	13.9 ± 0.3	4.29 ± 0.3	3.00 ± 0.2

Conclusion & Future Work

- The proposed approach is a valid alternative for trainable LFs
- This approach can be formulated as a plain ensemble method
- In Future work we aim to analyse the effectiveness of confidence

$$\tilde{s}_i(x) = \begin{cases} s_i^{(1)}(x), & \text{if } s_i^{(1)}(x) \ge \theta, \\ 0, & \text{otherwise.} \end{cases}$$

$$\tilde{s}_i(x) = \begin{cases} +s_i^{(1)}(x), & \text{if } s_i^{(1)}(x) \ge \theta_2, \\ 0, & \text{if } s_i^{(1)}(x) \in (\theta_1, \theta_2), \\ -s_i^{(1)}(x), & \text{if } s_i^{(1)}(x) \le \theta_1. \end{cases}$$

PLEASE FEEL FREE TO POST YOUR QUESTIONS!

THANK YOU VERY MUCH FOR LOOKING AT THE SLIDES ③

Slide 15/15 Using Meta Labels for the Training of Weighting Models | Peter Bellmann et al. | ICPR 2020 2021/01/14