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Motivation

Cooperative intention detection of vulnerable road users in
urban areas as basis for automated driving.
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Goals
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|[dentify cyclist motion states at all times using video data.

Detect transitions between motion states as early as possible.

Create reliable state estimates.
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Research Intersection
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O1(u,v,t)

1,639 video scenes of cyclists moving
across intersection.

Split into over 1.1 million samples of 1
second length.

Image Sequences, optical flow
sequences and trajectories were
extracted.

Optical flow sequences and trajectories
are available here:
https://doi.org/10.5281/zenodo.3734038
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https://doi.org/10.5281/zenodo.3734038

Method
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e Multi-stream architecture using image sequences,
optical flow sequences, and trajectories.

e ConvNets use Deepmind’s 13D architecture [1].

e Motion state is classified in every time step.
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Results

baseline model
wait/motion turn/straight left/right start/stop/move
F1,segq 0.813 0.550 0.909 0.400
wait motion turn straight left right start stop move
F1,segq 0.604 0.878 0.491 0.569 0.956 0.863 0.311 0.557 0.390
tg 0.081s | 0.062s | 0.180s | 0.063s | 0.012s | 0.029s | 0.033s | 0.265s | 0.157s
MS-Net
wait/motion turn/straight left/right start/stop/move
F1 seq 0.825 0.697 0.932 0.567
wait motion turn straight left right start stop move
Fi segq 0.635 0.884 0.431 0.761 0.908 0.954 0.312 0.497 0.656
tg 0.060s | 0.032s | 0.217s | 0.036s | 0.015s | 0.013s | 0.011s | 0.509s | 0.071s

e Compared to a baseline model (trajectory only), the method using motion
sequences leads to more accurate predictions and faster detection of transitions
between motion states.

e The use of optical flow sequences alone leads to similar results compared to a
model using motion sequences, optical flow sequences, trajectory inputs.

e The inference time of the model was measured at 41 ms.
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Thank You

Thank you for watching!

| hope to talk to you at the poster
presentation!
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