

Fusion of Global-Local Features for Image Quality inspection of Shipping Label

Sungho Suh, Paul Lukowicz, Yong Oh Lee

25th International Conference on Pattern Recognition (ICPR) 2020

1. Introduction – Shipping label

- Shipping Label
 - Contains barcodes and the address of sender and receiver
- Problematic labels lead to High-cost loss problem
 - such as undeliverable situations, returned products, and damages on seller's reliability
 - The annual costs are estimated at about 1.5 billion dollars for the postal service and 20 billion dollars for the mailing industry
- The performance of OCR engines and text detection engines is sensitive to image quality and defects on target objects.

- 1. Introduction Image Quality Inspection of Shipping label
- To reduce the processing time and the accuracy of the inspection, bad quality images need to be detected.
- We define five classes; Normal, Unreadable, Contaminated, Handwritten, Damaged
- "Contaminated" class for preprocessing process, "Unreadable" class for bad image quality assessment, "Handwritten" class for OCR engine, and "Damaged" class for bad quality product inspection

1. Introduction – Problems for classification based on CNNs

- Two problems for classification
 - 1. The varying aspect ratios and sizes of shipping label images
 - 2. Difficult to distinguish between contaminants in the address area and contaminants in other areas.
- General methods for handling input images of different sizes
 - 1. Resizing the input image while maintaining the aspect ratio in the padding space
 - 2. Using patches as inputs to the CNN to extract discriminative features
- Resizing the input images leads to increasing the ambiguity between normal and blurred images because of the loss of detailed features, making it difficult to detect defects in ROIs.
- Dividing an input image into patches can lead to the loss of global features, degrading the classification performance.

→ In this study, we propose an input image quality verification method using CNNs combining global and local features for shipping label inspection.

- 2. Proposed Method The shipping label inspection system
- The shipping label inspection system involves six steps
 - 1. Unreadable image and the damaged label \rightarrow Image reacquisition request
 - 2. The contaminated and handwritten addresses → Parameter tuning for image enhancement and text recognition process

Address Validation

2. Proposed Method – Feature Localization

- Feature Localization by using YOLO and FAST
 - Address and Barcode detection by using YOLO: a fast general-purpose object detector using deep neural networks and achieved real-time detection. that is much faster than R-CNN and Faster R-CNN based methods.
 - Region localization by using FAST: a famous corner-detection algorithm that can be used to extract feature points.

Complete Image

Address and Barcode area by YOLO

s클래스 머

CA1 A

Copyright© 2020. KIST Europe Forschungsgesellschaft mbH, All rights reserved.

[정보보호틀위

: 689

하여임시기상번

57-704

호를 사용합니다

46-228

2. Proposed Method – Overall network architecture

- Global and Local Feature Fusion
 - Deployed ResNet-50 pre-trained on ImageNet for global and local feature extractions. •
 - A stacked generalization ensemble was adopted to combine the global and local features.
 - To verify the proposed method, we compared the proposed ensemble models with majority voting and weighted majority voting ٠ algorithms.

3. Experimental Results - Dataset

- Generated and collected real shipping label dataset
 - We have generated and collected 5306 and 1092 images of different types and from various countries using smartphones.
 - Five people manually annotated the dataset with specific sorting criteria.

Defect Type	# of Images (Generated)	# of Images (Collected)
Normal	1283	660
Contaminated	1054	139
Unreadable	904	107
Handwritten	988	52
Damaged	1077	134
Total	5306	1092

• The performance of the detection by YOLO

Region	mAP (Generated)	mAP (Collected)
Address	0.9653 ± 0.1637	0.8907 ± 0.0215
Barcode	0.9976 ± 0.0018	0.9778 ± 0.0065
Total	0.9814 ± 0.0085	0.9343 ± 0.0105

- 3. Experimental Results Classification Results
- Comparison of classification results on the generated dataset

Methods	VGG-19	ResNet-50
Only global features	95.98 ± 0.74 %	95.80 ± 0.38 %
Global-local fusion (majority voting)	96.40 ± 0.65 %	96.62 ± 0.43 %
Global-local fusion (weighted majority voting)	97.16 ± 0.43 %	97.02 ± 0.77 %
Global-local fusion (ours)	98.32 ± 0.49 %	99.06 ± 0.66 %

• Comparison of classification results on the collected real dataset

Methods	VGG-19	ResNet-50
Only global features	85.40 ± 2.43 %	86.00 ± 3.40 %
Global-local fusion (majority voting)	84.67 ± 2.27 %	86.40 ± 2.97 %
Global-local fusion (weighted majority voting)	85.00 ± 2.68 %	87.60 ± 2.70 %
Global-local fusion (ours)	87.80 ± 2.13 %	89.26 ± 2.70 %

• Accuracy of each class on the collected real dataset

Defect Type	Only global features	Global-local fusion (ours)
Normal	93.33 %	95.00 %
Contaminated	78.33 %	85.00 %
Unreadable	83.33 %	88.33 %
Handwritten	98.33 %	98.33 %
Damaged	76.67 %	79.31 %
Total	86.00 %	89.26 %

4. Conclusion

- We have presented an input image quality verification method using CNNs combining global and local features for shipping label inspection.
- As the four different poor conditions of captured images were successfully classified, the performance of the shipping label inspection system could be improved and the cost in logistics could be reduced.
- In future work, we plan to apply the proposed method to a packaging machine with an industrial camera and will test it in the logistics industry.
- We also plan to improve the image enhancement and text recognition process in the shipping label inspection system.

T H A N K Y O U

KIST Europe Forschungsgesellschaft mbH Campus E7.1 66123, Saarbrücken, Germany

Acknowledgments

This research was supported by the KIST Europe Institutional Program (Project No. 12005).

