OmniFlowNet: a Perspective Neural Network Adaptation for Optical Flow Estimation in Omnidirectional Images Submission 833

Charles-Olivier Artizzu¹, Haozhou Zhang², Guillaume Allibert¹ and Cédric Demonceaux²

¹Université Côte d'Azur, CNRS, I3S, France.

²VIBOT ERL CNRS 6000, ImViA, Université Bourgogne Franche-Comté, France.

25th International Conference on Pattern Recognition 10-15 January 2021, Milan, Italy

Context

Goal:

Optical flow estimation in spherical images using deep learning approaches.

Issues:

- No omnidirectional annotated dataset;
- Strong images distortions due to projection.

<u>Solutions:</u> Adaptation of perspective networks taking into account distortions by modifying the convolution.

Equirectangular image of an outdoor car scene. Polar regions are highly distorted

Optical Flow

Optical flow: estimation of the apparent motion between two images.

Methods of computation:

- 1981 Variatonal: (Horn and Schunck 1981) (Lucas and Kanade 1981)
- 2011 Phase-Based methods: (Radgui et al. 2011)
- 2013 Unsupervised Deep Learning: DeepFlow (Weinzaepfel et al. 2013)
- 2015 Supervised Deep Learning: FlowNet (Dosovitskiy et al. 2015)
- 2020 LiteFlowNet2 (Hui, Tang, and Loy 2020)

Optical Flow from Sintel Dataset (Butler et al. 2012)

Adaptation to spherical

Solutions to adapt to spherical distortions:

- Build an Omnidirectional annotated dataset
- Change the entire features map: Fast Fourier Transformation (Cohen et al. 2018), Polyhedra (Lee et al. 2018)
- Adapt the perspective CNN kernels to equirectangular: Linear Adaptation (Su and Grauman 2017), Spherical Adaptation (Fernandez et al. 2020)

Proposed solution

Local perspective projection of CNN kernels on the sphere:

Example of kernels with different latitude and longitude. Blue: center of kernel. Green: Perspective kernel. Red: Spherical kernel.

Proposed solution available on any CAFFE (Jia et al. 2014) based CNN.

Proposed solution

Implemented on LiteFlowNet2 (Hui, Tang, and Loy 2020). Weights from LiteFlowNet2 authors (training MPI Sintel).

Validation on vitual datasets

Virtual scenes built on **Blender**: 3 scenes, 4 camera orientations. **Ground truth optical flow** extracted using *Vector Pass* (Ranjan et al. 2020).

Comparison metrics used (Baker et al. 2007): Angular Error (in degrees) and Endpoint Error (in pixels):

$$AE = \cos^{-1} \left(\frac{1 + u \cdot u_{gt} + v \cdot v_{gt}}{\sqrt{1 + u^2 + v^2}\sqrt{1 + u_{gt} + v_{gt}}} \right)$$
$$EE = \frac{1}{N} \sum \sqrt{(u_{gt} - u)^2 + (v_{gt} - v)^2}$$

with (u, v) the estimated flow and (u_{gt}, v_{gt}) the ground truth.

Average on 1200 frames	Cartoon Tree		Forest		Low Poly Model	
	AE	EE	AE	EE	AE	EE
LiteFlowNet2	63.07	5.60	58.11	10.61	58.03	7.66
OmniFlowNet	54.74	4.49	55.05	9.72	55.21	7.23

Real scenes were filmed using a Theta Ricoh Z1:

- Apple 1 and Ball 3: moving indoor scene / fixed camera;
- Ball 1 and Ball 2: moving outdoor scene / fixed camera;
- Car 1 and Car 2: fixed outdoor scene / moving camera.

Same performances in the equatorial region.

Better performances of OmniFlowNet in the polar regions.

Complete video available on:

http://www.i3s.unice.fr/~allibert/Videos/icpr20_video.mp4.

Validation on real videos

OmniFlowNet

RGB Input

Conclusion

OmniFlowNet:

- perspective CNN adapted to equirectangular images;
- plugin transferable on any CAFFE network;
- no extra training needed;
- no slowdown in the time execution;
- proven performances on real and virtual datasets.

Code and dataset available on: https://github.com/coatz/OmniFlowNet.

Thank you for your attention.