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m Multi-task learning (MTL) provides state-of-the-art results in many
applications of computer vision and natural language processing (NLP).

m In contrast to single-task learning (STL), MTL allows for leveraging
knowledge between related tasks improving forecast results on the main
task (in contrast to an auxiliary task) or all tasks.

m Even though several articles are evaluating the effectiveness of MTL
approaches for computer vision and NLP problems, there is a limited
number of comparative studies on regression and time series problems
taking recent advances of MTL into account.

m Forecasting the expected power generation for renewable power plants is
such a challenging problem.
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m Typically, predicting power
generation is a two-step
approach.
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m The task embedding network essentially replaces the task specific layers of an
hard parameter sharing (HPS) network through the embedding of a task ID.

m The task ID is a categorical feature, where each park has a unique ID.

m As all tasks share the same layers, except the task ID encoding, this
approach can be considered an HPS network.
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Emerging Relation Network (ERN) (B Bt spems

m In soft parameter sharing (SPS), each task has a separate network learning a
separate representation for each task.

m In architectures such as the sluice network (SN), information between the
networks is shared by alpha units.

m In case of the SN the sharing works through a subspace sharing
mechanism.

m We replace the subspace based sharing mechanism with a neuron based
sharing mechanism in the alpha unit.
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m Evaluation of two solar and two wind datasets. Comparison to STL MLP,
LSTM, HPS, cross-Stitch, and sluice network.

m The ERN is beneficial when tasks are loosely related and sufficient training
samples are available.

m The task embedding is advantageous for tasks with limited historical data and
a strong relationship between tasks.

m For a solar power dataset, the task embedding achieves the best mean
improvement with 8.2%.

m For two wind and one solar dataset, the ERN is the best MTL architecture with
improvements up to 11.3%.
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