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Few-shot learning
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Meta-learning contains a base-learner, and a meta-learner
which adapts the base-learner to new tasks with few samples.
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Problems

1.1t is hard to acquire plenty of samples.

2.The Representation Deficiency commonly exists in few-shot
learning.
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Motivation

e The out-performance of variational inference in generating
extra information.
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Contribution

e \We propose an end-to-end framework and interpolate a latent space
to endue the reconstructed latent codes with more information,
complementing the representation deficiency in a high-dimensional
parameter space.

e The probabilistic latent space with stochastic initialization collaborates
well with different base-learners and can be extended to other
architecture with high-dimensional feature extractors in few-shot
learning.

e We optimize the framework leveraging new loss function for the
proposed latent space, which acquires better generalization across tasks
and achieves the state-of-theart performance in few-shot learning
classification tasks.
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VELIEES

Related work

1) Metric-based methods, which learn a similarity space through training
similar metrics over the same class to enhance effectiveness.

2) Memory-based methods, which use memory architecture to store key
“experience” from seen samples and generalize to unseen tasks according to

the stored knowledge.

3) Optimization-based methods, which search for a suitable meta-learner
that is conducive to fast gradient-based adaptation to new tasks.
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Method
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Method

extra representation
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The latent code is endued extra information, when reconstructed in
latent space Z, to complement the representation deficiency.



Method

Algorithm 1 MCRNet
Input: Meta-training  set  S"™"; Encoding function
fo.. and  decoding function fy,; Learning rate
A1)

1: Imtalize ¢, ¢y randomly

2: Let ¢ = {ql}t::‘f’rb }‘}

3: while new batch do

4 for number of task in batch do

5: Sample task 7; = (DTein_ plest) from Girein
6

7

for number of sample in support set D" do

; Lrain N, | 2 A
Encode samples in D" o z with complemented LT (DI 6,0,0) =

representations using fy_ ) =

Decoden vaite £y Y [y folea) + 10gY exploun- folwa))]
9: Compute # in base-learner using (6) (£n.yn)E DT k=1
10: Compute training loss EF}:“"“ (Dirn. 6,0, ) (8)
11: Perform gradient optimization:

@—9=2) Vo E?—;Mﬂ{ﬂhw{ﬂQ ¢1 01*11:':]
5 e or | » Lreta(Sirein,9)= 37 (LD ,0,0) +BLuar
13: for number of sample in query set D% do Torogtrain
14: Compute test loss L2 (D' ¢, 0, ) i 5
15: end for ©)
16: Compute meta-training loss L™ (St 0 d)
17: Perform gradient optimization:

ﬁ'ﬁ o {3} . ?}. ?qﬁ- Emeh:{gﬁrrxin; ﬂ, {.‘h‘}

18:  end for

19: end while
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Experiments

TABLE I: Comparisons of average classification accuracy (%) with 95% confidence intervals on the CIFAR-FS
and FC100, “SVM™ or “RR” means using SVM or Ridge Regression as base-learner.

method backbone CIFAR-F5 FC100

| -shot 5-shot | -shot 5-shot
Relation Networks |20)] 4CONV 3502 1.0 69.3 + 0.8 - -
Prototypical Networks [12] 4CONY 55.5 +£ 0.7 72.0 + 0.6 35.2 £ 06 48.6 + 0.6
MAML. | 10] 4CONYV 5894+ 1.9 71.5 4+ 1.0 - -
R2D2 [17] 4CONY 65.3 + 0.2 794 + 0.1 - -
Fine-tuning |28] ResNet-12 64,66 + 0.73 82,13 + 0.50 37.52 + 0.53 55.39 + (.57
TADAM | 18] ResNet-12 - - 40.1 +£ 0.4 56.1 + 0.4
MTL [5] ResNet-129 < - 43.6 + 1.8 554 + 0.9
Baseline-RR [25] ResNet-12 72.6 4+ 0.7 84.3 + 0.5 40.5 + 0.6 353 =06
Baseline-SVM |[25] ResNet-12 72.0 + 0.7 84.2 + 0.5 41.1 £ 0.6 55.5 + 0.6
MCRNet-RR (ours) ResNet-12 73.8 + 0.7 85.2 + 0.5 40.7 + 0.6 56.6 + 0.6
MCRNet-SVM (ours) ResNet-12 74.7 + 0.7 86.8 + 0.5 41.0 + 0.6 57.8 + 0.6

9 indicates that the method is not end-to-end.



Experiments

TABLE II: Comparisons of average classification accuracy (%) with 95% confidence intervals on

the minilmageNet.

method backbone 1-shot 5-shot
Meta-Learning LSTM [19] 4CONV 43.44 + 0.77 60.60 + 0.71
Matching networks [11] 4CONYV 43.56 + (.84 5331 +£ 0.73
MAML [10] 4CONV 48.70 4+ 1.84 63.11 + 0.92
Prototypical Networks [12] 4CONV 49.42 + 0.78 68.20 + 0.66
Relation Networks [20] 4CONV 50.44 4+ 0.82 65.32 + 0.70
R2D2 [17] 4CONV 51.2 4+ 0.6 68.8 + 0.1
SRAN |[15] ResNet-1019 51.62 + 0.31 66.16 + 0.51
DN4 |29] ResNet-12 54.37 + 0.36 74.44 + 0.29
SNAIL |22] ResNet-12 55.71 + 0.99 68.88 + 0.92
Fine-tuning |28] ResNet-12 56.67 + 0.62 74.80 + 0.51
TADAM [18] ResNet-129 58.50 + 0.30 76.70 + 0.30
CAML |30] ResNet-12 59.23 + 0.99 72.35 + 0.71
TPN |31] ResNet-12 59.46 75.65
wDAE-GNN [32] WRN-28-10 61.07 + 0.15 76.75 4+ 0.11
MTL |5] ResNet-129 61.2 + 1.8 75.5 + 0.8
LEO [3] WRN-28-10% 61.76 + 0.08 77.59 + 0.12
LEO* [3] ResNet-129 58.67 + 0.07* 73.45 + (0.12*
Baseline-RR [25] ResNet-12 60.02 + 0.64* 76.51 + 0.49*
Baseline-SVM |25] ResNet-12 60.73 + 0.65* 76.16 + 0.49*
MCRNet-RR (ours) ResNet-12 61.32 4+ 0.64 78.16 + 0.49
MCRNet-SVM (ours) ResNet-12 62.53 + 0.64 80.34 + 0.47

Y indicates those methods are not end-to-end. * indicates those methods that are reproduced by

ourselves for comparison of convergence.



AR =ZzXF

Wuhan University of Technology

Experiments
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Fig. 4: (a) Comparison of convergence on minilmageNet. Accuracies are obtained on meta-validation set after each epoch. (b)
Some examples ol the representation output from baseline and MCRNet.
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Experiments

TABLE I1I: Comparisons of average classification accuracy
(%) in different dimensions on the CIFAR-FS, FC100, and
minilmageNet,

CIFAR-FS  FCI0O0  mimlmageNel
RR SVM RR S5VM RR §SVM
72.6 720 405 41.1 600 60.7

Latent Dimension shot

without MCRNet

I
! I 694 70.1 390 398 57.2 58.7
16 I 703 712 392 404 584 60.1
32 I 729 725 40.7 40.7 603 61.5
64 I 738 747 404 41.0 613 625
without MCRNet 1 843 842 553 555 765 76.2
8 5 826 838 535 540 758 754
16 5 838 843 540 554 764 715
32 5 845 855 56.6 56,6 769 790
64 5 852 B6.8 554 578 782 803
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Conclusion

In this paper, we proposed an MCRNet for few-shot learning, which
achieved state-of-the-art performance on the challenging 5-way 1-
and 5-shot CIFAR and ImageNet classification problems.
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Future work

1.Decoder: more embedding, such as 4CONV,
ResNet-12, WRN-28.

2. Optimization in outer loop.



