

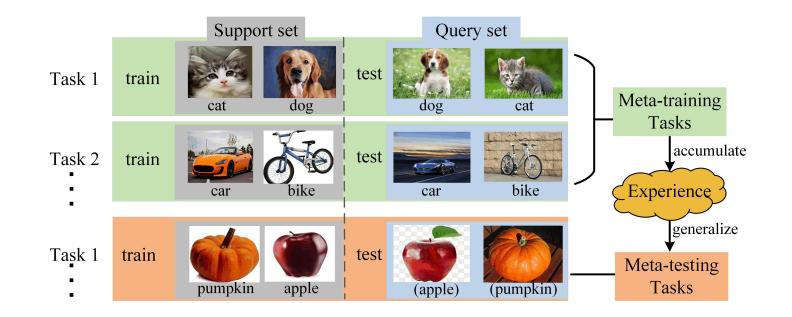
Complementing Representation Deficiency in Few-shot Image Classification: A Meta-Learning Approach

Xian Zhong Hubei Key Laboratory of Transportation Internet of Things & School of Computer Science and Technology, Wuhan University of Technology, Wuhan, China zhongx@whut.edu.cn

Lin Li School of Computer Science and Technology, Wuhan University of Technology, Wuhan, China cathylilin@whut.edu.cn Cheng Gu School of Computer Science and Technology, Wuhan University of Technology, Wuhan, China gucheng hs@whut.edu.cn Wenxin Huang School of Computer Science Wuhan University Wuhan, China wenxin.huang@whu.edu.cn

Shuqin Chen School of Computer Science and Technology, Wuhan University of Technology, Wuhan, China csqcwx0801@whut.edu.cn Chia-Wen Lin Department of Electrical Engineering & Institute of Communications Engineering, National Tsing Hua University, Hsinchu, Taiwan cwlin@ee.nthu.edu.tw

Few-shot learning



Meta-learning contains a base-learner, and a meta-learner which adapts the base-learner to new tasks with few samples.

Problems

1.It is hard to acquire plenty of samples.

2. **The Representation Deficiency** commonly exists in few-shot learning.

Motivation

• The out-performance of variational inference in generating extra information.

Contribution

• We propose an end-to-end framework and interpolate a latent space to endue the reconstructed latent codes with more information, complementing the representation deficiency in a high-dimensional parameter space.

• The probabilistic latent space with stochastic initialization collaborates well with different base-learners and can be extended to other architecture with high-dimensional feature extractors in few-shot learning.

• We optimize the framework leveraging new loss function for the proposed latent space, which acquires better generalization across tasks and achieves the state-of-theart performance in few-shot learning classification tasks.

Related work

1) **Metric-based methods**, which learn a similarity space through training similar metrics over the same class to enhance effectiveness.

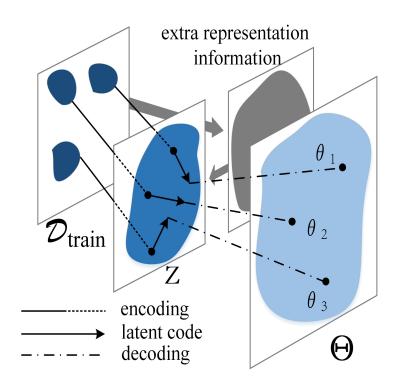
2) **Memory-based methods**, which use memory architecture to store key "experience" from seen samples and generalize to unseen tasks according to the stored knowledge.

3) **Optimization-based methods,** which search for a suitable meta-learner that is conducive to fast gradient-based adaptation to new tasks.

Method



Method



The latent code is endued extra information, when reconstructed in latent space Z, to complement the representation deficiency.

Method

Algorithm 1 MCRNet

Input: Meta-training set S^{train} ; Encoding function f_{ϕ_e} , and decoding function f_{ϕ_d} ; Learning rate λ, η

- 1: Initialize ϕ_e, ϕ_d randomly
- 2: Let $\phi = \{\phi_e, \phi_d, \lambda\}$
- 3: while new batch do
- 4: for number of task in batch do
- 5: Sample task $\mathcal{T}_i = (\mathcal{D}^{train}, \mathcal{D}^{test})$ from S^{train}
- 6: for number of sample in support set \mathcal{D}^{train} do
- 7: Encode samples in \mathcal{D}^{train} to z with complemented representations using f_{ϕ_e}
- 8: Decode z using f_{ϕ_d}
- 9: Compute θ in base-learner using (6)
- 10: Compute training loss $\mathcal{L}_{\mathcal{T}_i}^{train}(\mathcal{D}^{train};\phi,\theta,\varphi)$
- 11: Perform gradient optimization: $\theta \leftarrow \theta - \lambda \bigtriangledown_{\theta} \mathcal{L}_{T_{c}}^{train}(\mathcal{D}^{train}; \phi, \theta, \varphi)$
- 12: end for
- 13: for number of sample in query set \mathcal{D}^{test} do
- 14: Compute test loss $\mathcal{L}_{T_i}^{test}(\mathcal{D}^{test};\phi,\theta,\varphi)$
- 15: end for
- 16: Compute meta-training loss $\mathcal{L}^{meta}(\mathcal{S}^{train};\theta,\phi)$
- 17: Perform gradient optimization: $\phi \leftarrow \phi - \eta \bigtriangledown \phi \mathcal{L}^{meta}(\mathcal{S}^{train}; \theta, \phi)$
- 18: end for
- 19: end while

$$\mathcal{L}_{\mathcal{T}_{i}}^{train}(\mathcal{D}^{train};\phi,\theta,\varphi) = \sum_{(x_{n},y_{n})\in D_{i}^{train}} [-\varphi w_{y_{n}} \cdot f_{\phi}(x_{n}) + \log \sum_{k=1}^{K} \exp(\varphi w_{k} \cdot f_{\phi}(x_{n}))],$$
(8)

$$\mathcal{L}^{meta}(\mathcal{S}^{train};\theta,\phi) = \sum_{\mathcal{T}_i \sim S^{train}} [\mathcal{L}^{test}_{\mathcal{T}_i}(\mathcal{D}^{test};\phi,\theta,\varphi) + \beta \mathcal{L}_{var}]$$
(9)

TABLE I: Comparisons of average classification accuracy (%) with 95% confidence intervals on the CIFAR-FS and FC100. "SVM" or "RR" means using SVM or Ridge Regression as base-learner.

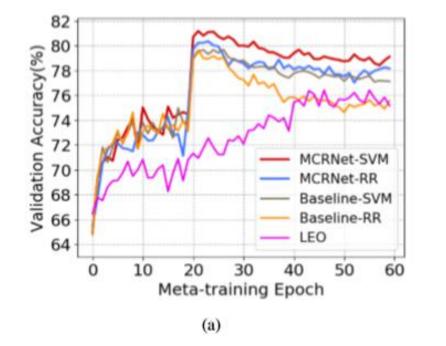
method	backbone	CIFAR-FS		FC100		
		1-shot	5-shot	1-shot	5-shot	
Relation Networks [20]	4CONV	55.0 ± 1.0	69.3 ± 0.8	-	-	
Prototypical Networks [12]	4CONV	55.5 ± 0.7	72.0 ± 0.6	35.3 ± 0.6	48.6 ± 0.6	
MAML [10]	4CONV	58.9 ± 1.9	71.5 ± 1.0	-	-	
R2D2 [17]	4CONV	65.3 ± 0.2	79.4 ± 0.1		-	
Fine-tuning [28]	ResNet-12	64.66 ± 0.73	82.13 ± 0.50	37.52 ± 0.53	55.39 ± 0.57	
TADAM [18]	ResNet-12	1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 -	19	40.1 ± 0.4	56.1 ± 0.4	
MTL [5]	ResNet-12¶	-	-	$\textbf{43.6} \pm \textbf{1.8}$	55.4 ± 0.9	
Baseline-RR [25]	ResNet-12	72.6 ± 0.7	84.3 ± 0.5	40.5 ± 0.6	55.3 ± 0.6	
Baseline-SVM [25]	ResNet-12	72.0 ± 0.7	84.2 ± 0.5	41.1 ± 0.6	55.5 ± 0.6	
MCRNet-RR (ours)	ResNet-12	73.8 ± 0.7	85.2 ± 0.5	40.7 ± 0.6	56.6 ± 0.6	
MCRNet-SVM (ours)	ResNet-12	74.7 ± 0.7	86.8 ± 0.5	41.0 ± 0.6	$\textbf{57.8} \pm \textbf{0.6}$	

[¶] indicates that the method is not end-to-end.

TABLE II: Comparisons of average classification accuracy (%) with 95% confidence intervals on the miniImageNet.

method	backbone	1-shot	5-shot
Meta-Learning LSTM [19]	4CONV	43.44 ± 0.77	60.60 ± 0.71
Matching networks [11]	4CONV	43.56 ± 0.84	55.31 ± 0.73
MAML [10]	4CONV	48.70 ± 1.84	63.11 ± 0.92
Prototypical Networks [12]	4CONV	49.42 ± 0.78	68.20 ± 0.66
Relation Networks [20]	4CONV	50.44 ± 0.82	65.32 ± 0.70
R2D2 [17]	4CONV	51.2 ± 0.6	68.8 ± 0.1
SRAN [15]	ResNet-101¶	51.62 ± 0.31	66.16 ± 0.51
DN4 [29]	ResNet-12	54.37 ± 0.36	74.44 ± 0.29
SNAIL [22]	ResNet-12	55.71 ± 0.99	68.88 ± 0.92
Fine-tuning [28]	ResNet-12	56.67 ± 0.62	74.80 ± 0.51
TADAM [18]	ResNet-12¶	58.50 ± 0.30	76.70 ± 0.30
CAML [30]	ResNet-12	59.23 ± 0.99	72.35 ± 0.71
TPN [31]	ResNet-12	59.46	75.65
wDAE-GNN [32]	WRN-28-10	61.07 ± 0.15	76.75 ± 0.11
MTL [5]	ResNet-12¶	61.2 ± 1.8	75.5 ± 0.8
LEO [3]	WRN-28-10¶	61.76 ± 0.08	77.59 ± 0.12
LEO* [3]	ResNet-12¶	$58.67 \pm 0.07^{*}$	$73.45 \pm 0.12^{*}$
Baseline-RR [25]	ResNet-12	$60.02 \pm 0.64^*$	$76.51 \pm 0.49^{*}$
Baseline-SVM [25]	ResNet-12	$60.73 \pm 0.65^{*}$	$76.16 \pm 0.49^{*}$
MCRNet-RR (ours)	ResNet-12	61.32 ± 0.64	$\textbf{78.16} \pm \textbf{0.49}$
MCRNet-SVM (ours)	ResNet-12	$\textbf{62.53} \pm \textbf{0.64}$	$\textbf{80.34} \pm \textbf{0.47}$

¶ indicates those methods are not end-to-end. * indicates those methods that are reproduced by ourselves for comparison of convergence.



raw sample	baseline	MCRNet(ours)		
and a	Contraction of the second	Carlo		
	(b)			

Fig. 4: (a) Comparison of convergence on miniImageNet. Accuracies are obtained on meta-validation set after each epoch. (b) Some examples of the representation output from baseline and MCRNet.

TABLE III: Comparisons of average classification accuracy (%) in different dimensions on the CIFAR-FS, FC100, and miniImageNet.

Latent Dimension	shot	CIFAR-FS		FC100		miniImageNet	
Eutent Emension	Shot	RR	SVM	RR	SVM	minil RR 60.0 57.2 58.4 60.3 61.3 76.5 75.8	SVM
without MCRNet	1	72.6	72.0	40.5	41.1	60.0	60.7
8	1	69.4	70.1	39.0	39.8	57.2	58.7
16	1	70.3	71.2	39.2	40.4	58.4	60.1
32	1	72.9	72.5	40.7	40.7	60.3	61.5
64	1	73.8	74.7	40.4	41.0	61.3	62.5
without MCRNet	1	84.3	84.2	55.3	55.5	76.5	76.2
8	5	82.6	83.8	53.5	54.0	75.8	75.4
16	5	83.8	84.3	54.0	55.4	76.4	77.5
32	5	84.5	85.5	56.6	56.6	76.9	79.0
64	5	85.2	86.8	55.4	57.8	78.2	80.3

Conclusion

In this paper, we proposed an **MCRNet** for few-shot learning, which achieved state-of-the-art performance on the challenging 5-way 1and 5-shot CIFAR and ImageNet classification problems.

Future work

1.Decoder: more embedding, such as 4CONV, ResNet-12, WRN-28.

2. Optimization in outer loop.