

Revisiting the Training of Very Deep Neural Networks without Skip Connections

Oyebade K. Oyedotun, Abdelrahman Shabayek, Djamila Aouada, Björn Ottersten

Interdisciplinary Centre for Security, Reliability and Trust (SnT)
University of Luxembourg, L-1855 Luxembourg
{oyebade.oyedotun, djamila.aouada, bjorn.ottersten}@uni.lu

Presentation by Oyebade K. Oyedotun

Outline

- 1. Introduction
- 2. Investigation
- 3. Alleviating the training problems of very deep PlainNets
- 4. Experiments
- 5. Conclusion

Introduction: training Very Deep Neural Networks

Very deep models:

☐ These are deep neural networks (DNNs) with over 15 layers

	PlainNets (i.e. no skip connections)	Deep Neural Networks with Skip Connections		
Features	 Few layers Simple architectures Difficult optimization Model operation is explainable [1] 	 Several layers Complicated architectures Easy optimization Model operation is unclear [1, 2, 3, 4] 		
Architecture	• No skip connections	• With skip connections		
	H(x)	$\mathcal{F}(\mathbf{x}) + \mathbf{x}$ relu		

Introduction: training very deep PlainNets is difficult

Problem statement:

☐ Training very deep PlainNets become difficult with depth increase

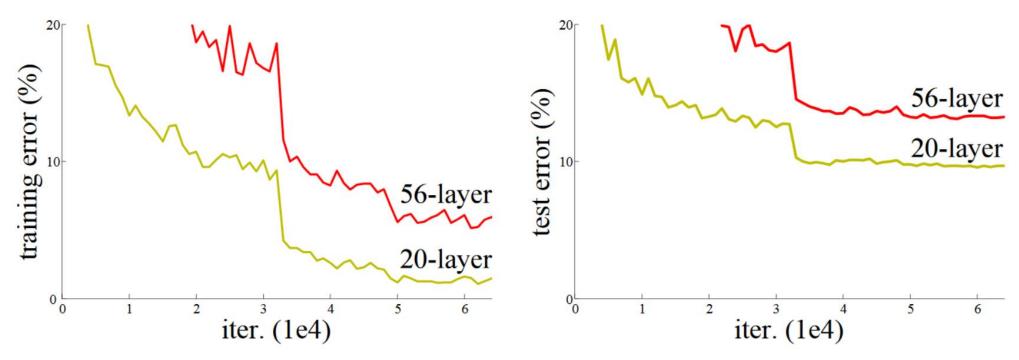


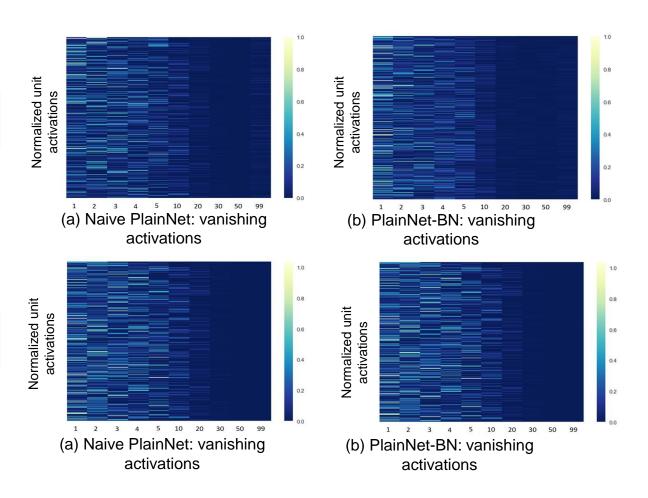
Fig. 2. Error rate increase on the very deep PlainNets trained on CIFAR-10 dataset [5]

Investigation: vanishing/exploding units' outputs

☐ Units' outputs decrease globally with depth

Normalized mean layer activations for a 100 layer PlainNet over COIL-20 dataset

Normalized mean layer activations for a 100 layer PlainNet over USPS dataset



Keys:

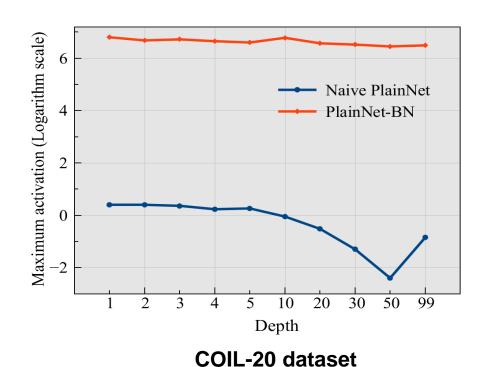
- BN → batch normalization [6]
- Naïve PlainNet → no BN
- PlainNet-BN → with BN

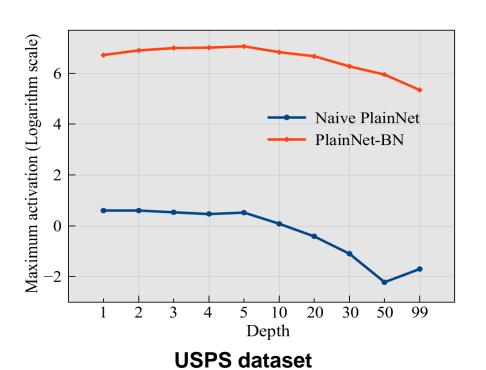
Highlights:

 Units' outputs decay → info loss

Investigation: vanishing/exploding units' outputs

☐ Units' in PlainNet-BN have extremely high outputs



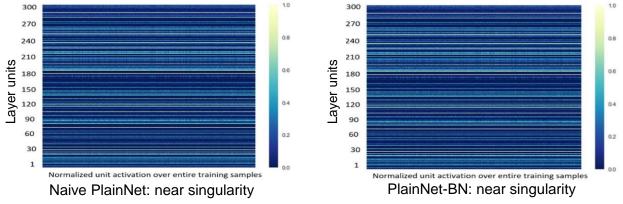


Highlight:

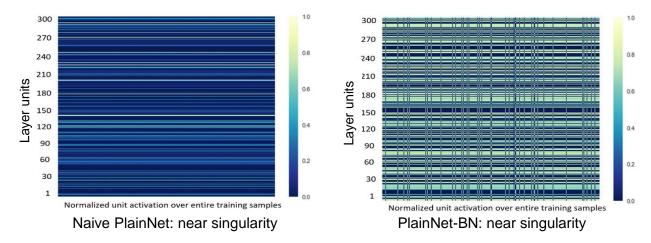
Extremely high or small outputs → bad optimization

Investigation: hidden representation near singularity SIT

☐ Units respond in similar fashion to different training samples



50th layer activations in a 100 layer PlainNet for the entire COIL-20 training set



99th layer activations in a 100 layer PlainNet for the entire COIL-20 training set

Highlights:

- Units' response → near-singularity
- Near-singularity → high condition number
- High condition number → bad optimization

Alleviating the training problems of very deep PlainNets

- Components of the proposed approach
 - Leaky Rectified Linear Unit (LReLU) → vanishing/exploding units' outputs

$$H(x)^{l} = 1(Z^{l} \le 0)(\beta Z^{l}) + 1(Z^{l} > 0)(Z^{l}), \tag{1}$$

where Z^l and β are the pre-activation and leaky scaling factor, respectively.

○ Max-norm constraint → exploding unit's output

$$\parallel \overrightarrow{w_j} \parallel \leq c_i , \qquad (2)$$

where *c* is the specified max-norm.

○ Weight initialization from uniform distribution → weight diversity

$$U[\sqrt{6/n_{in}^l}, -\sqrt{6/n_{in}^l}]$$
, (3)

where n_{in}^l is the number of units feeding into layer l.

Experimental results: proposed solution (PlainNet)

☐ Table 1: Ablation studies – 100 layer model results using USPS dataset

Model component	Train error	Test error
Batch normalization (BN) LReLU May name	84.56% 92.37%	83.21% 92.03%
Max-norm BN + LReLU BN + max-norm	86.22% 78.38% 82.90%	86.85% 79.52% 81.86%
LReLU + max-norm Proposed: BN + LReLU + max-norm	83.62% 0.11%	82.11% 5.48%

Highlight:

Proposal → the three components give the best results

☐ Table 2: Model results using CIFAR-10 dataset

Model	Skip conn.	Layers	Parameters	Test error
Highway network [2]	Yes	19	2.30M	7.54%
ResNet [3]	Yes	56	0.85M	6.97%
ResNet [3]	Yes	110	1.7M	6.43%
All CNN [30] NiN [31] Delta init. [15] PlainNet-BN [3] Proposed PlainNet	No	8	1.30M	7.25%
	No	10	1.30M	8.81%
	No	32	17.80M	18.00%
	No	56	0.85M	15.00%
	No	50	0.72M	6.65%

Highlight:

Proposal → successful training

Conclusion

Paper highlights:

- ☐ Revisited the problem of training very deep networks without skip connections
- ☐ Proposed an approach to tackle identified problems
- ☐ The proposed DNN is seen to outperform similar models without skip connections
- ☐ The proposed DNN without skip connections achieve competitive results in comparison to DNNs with skip connections.

References

- 1. Xiao, L., Bahri, Y., Sohl-Dickstein, J., Schoenholz, S., & Pennington, J. (2018, July). Dynamical Isometry and a Mean Field Theory of CNNs: How to Train 10,000-Layer Vanilla Convolutional Neural Networks. In International Conference on Machine Learning (pp. 5393-5402).
- 2. Veit, A., Wilber, M. J., & Belongie, S. (2016). Residual networks behave like ensembles of relatively shallow networks. In Advances in neural information processing systems (pp. 550-558).
- 3. Balduzzi, D., Frean, M., Leary, L., Lewis, J. P., Ma, K. W. D., & McWilliams, B. (2017, August). The shattered gradients problem: if resnets are the answer, then what is the question?. In Proceedings of the 34th International Conference on Machine Learning-Volume 70 (pp. 342-350).
- 4. Greff, K., Srivastava, R. K., & Schmidhuber, J. (2017). Highway and residual networks learn unrolled iterative estimation. International Conference on Learning Representations.
- 5. He, K., Zhang, X., Ren, S., & Sun, J. (2016). Deep residual learning for image recognition. In Proceedings of the IEEE conference on computer vision and pattern recognition (pp. 770-778).
- 6. Szegedy, C., Ioffe, S., Vanhoucke, V., & Alemi, A. A. (2017, February). Inception-v4, inception-resnet and the impact of residual connections on learning. In Thirty-first AAAI conference on artificial intelligence.

Thank you!

