Light3DPose

Real-time Multi-Person 3D Pose Estimation from Multiple Views

Alessio Elmi - Davide Mazzini - Pietro Tortella

{alessio, davide, pietro}@standard.ai

Checkout Technologies

Introduction

Images credits:

- Rhodin, Helge, et al. "Learning monocular 3d human pose estimation from multi-view images." Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 2018.

- https://becominghuman.ai/what-is-the-main-purpose-of-video-annotation-in-machine-learning-and-ai-11805710bd95

Problem Statement

3D skeletons

Motivation

Detections can be noisy, due to (self-)occlusions or uncommon views. These errors are hard to recover in later stages.

Images credits:

- Cao, Zhe, et al. "Realtime multi-person 2d pose estimation using part affinity fields." Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 2017.

Motivation

Re-identification techniques have been explored. They are usually built on top of 2D pose estimation networks.

Architecture

Directly find 3D people poses from multiple calibrated camera views

2D Backbone

- Input: 2D image from single view
- **Output:** 2D features map (512 channels)

Very fast MobileNet V1 Pretrained on COCO [1]

Lightweight OpenPose [1] references: <u>https://github.com/Daniil-Osokin/lightweight-human-pose-estimation.pytorch</u>

Reduction

Unprojection Layer

• Input:

- 2D features maps for every view
- Camera parameters (Both Intrinsics and extrinsics)
- Output:
 - A single 3D features cube representing the whole scene

- Not learned
- Very fast implementation in GPU (pytorch)
- Lookup table with interpolation
- Differentiable wrt camera params

Volumetric Network

Decoding

Datasets

CMU Panoptic [1]

- 30+ HD views
- Hardware-based sync
- Calibration
- 65 sequences (5.5 hours)
- 1.5 millions of 3D skeletons

Shelf [2]

- used to evaluate cross-dataset model generalization
- single scene of four people
- video streams from five calibrated cameras.

H. Joo, H. Liu, L. Tan, L. Gui, B. Nabbe, I. Matthews, T. Kanade, S. Nobuhara, and Y. Sheikh, "Panoptic studio: A massively multiview system for social motion capture," in *Proceedings of the IEEE International Conference on Computer Vision*, 2015, pp. 3334–3342.

Evaluation Metrics

MPJPE: Mean Per Joint Precision Error

Average of the square distance of the predicted joints from the corresponding ground-truth joints

PCP: Percentage of Correctly estimated Parts

- a. Implemented according to [1].
- b. A body part is correct if the average distance of the two joints is less than a threshold from the corresponding groundtruth joints locations.
- c. The threshold is 50% the length of the groundtruth body part.

J. Dong, W. Jiang, Q. Huang, H. Bao, and X. Zhou, "Fast and robust multi-person 3d pose estimation from multiple views," in *Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition*, 2019, pp. 7792–7801.

Ablation studies

- 3D Augmentations
- Number of volumetric features
- Loss type
 - Different weights on the heatmap /

vectormap loss components

• Sub-voxel refinement

	6	PCP								
		MPJPE (cm)	Head	Torso	Up Arm	Lo Arm	Up Leg	Lo Leg	Avg	
Cube 1	Rotation		3D Augmentations							
		8.236	99.1	99.3	87.8	65.4	96.9	88.3	89.2	
\checkmark		4.598	99.6	99.7	98.5	90.1	99.3	98.5	97.7	
	\checkmark	5.350	99.6	99.7	98.6	91.1	99.0	94.9	97.3	
\checkmark	\checkmark	3.859	99.7	99.7	99.5	95.6	99.3	98.8	98.8	
3 6 9	52 54 96	4.760 3.859 3.975	Num 99.6 99.7 99.7	ber of 99.7 99.7 99.7	Volun 97.1 99.5 99.5	netric 78.9 95.6 96.2	Featur 99.5 99.3 99.3	res 98.6 98.8 98.7	95.9 98.8 98.9	
	Loss Type									
L	.1	4.106	99.6	99.7	99.2	96.2	99.0	98.0	98.7	
L	.2	4.125	99.6	99.7	99.5	96.6	99.4	98.9	99.0	
SmoothL1		3.859	99.7	99.7	99.5	95.6	99.3	98.8	98.8	
Heatmap / Vectormap Loss Ratio										
	1	3.859	99.7	99.7	99.5	95.6	99.3	98.8	98.8	

1	3.859	99.7	99.7	99.5	95.6	99.3	98.8	98.8
3	4.074	99.7	99.7	99.1	96.6	99.5	98.6	98.9
10	3.935	99.7	99.7	98.0	90.9	99.5	98.8	97.9

Sub-voxel refinement

	4.899	99.7	99.7	99.4	94.9	99.3	98.8	98.6
\checkmark	3.859	99.7	99.7	99.5	95.6	99.3	98.8	98.8

Study on the number of input views

Sub-modules decomposition

- Assessing cross-view generalization
- Good results even with 1 view

Assessing generalization

Panoptic D2D test set:

- Unseen views (new cameras, new angles)
- Unseen scenes

Shelf dataset:

- Completely unseen dataset
- Not yet SOTA results but getting closer
- Probably benefits from variety of pose configurations in training

	MI	PCP		
Model	single	multi	avg	avg
ACTOR [33] (2 views)*	17.21	50.24	33.72	(
ACTOR (4 views)*	8.19	20.10	14.14	-
ACTOR (10 views)*	6.13	12.21	9.17	1.00
Oracle [33] (using GT to select cameras)*	4.24	9.19	6.71	-
Ours (1 unseen view)	10.34	9.32	9.43	80.8
Ours (2 to 4 unseen views depending on scene)	5.30	4.09	4.22	98.2
Ours (10 views, from training view pool)	3.50	3.56	3.55	98.6

*ACTOR: number in brackets refers to maximum number of views to choose from. Oracle means: best views to triangulate are selected using groundtruth.

Model	Actor 1	Actor 2	Actor 3	Avg	Speed(s)
Belagiannis et al. [34]	66.1	65.0	83.2	71.4	-
Belagiannis et al. [40]	75.0	67.0	86.0	76.0	1.00
Belagiannis et al. [41]	75.3	69.7	87.6	77.5	-
Ershadi et al. [42]	93.3	75.9	94.8	88.0	- 2
Dong et al. [36]	98.8	94.1	97.8	96.9	.465
Ours	94.3	78.4	96.8	89.8	.146

Visual Results - Multiple views

Input views

Visual Results - Single View

- Unseen scene
- Unseen camera views

Thank you for your attention

Alessio Elmi

Davide Mazzini

Pietro Tortella

{alessio, davide, pietro}@standard.ai

