

Task-based Focal Loss for Adversarially Robust Meta-Learning

JESEE BREE

Yufan Hou, Lixin Zou, Weidong Liu Department of Computer Science and Technology Tsinghua University, Beijing, China

Background & Related Work

Method

Experiments

Background

Adversarial attack:

- ✤ a technique that attempts to fool models by supplying deceptive input
- white-box attack: maximize loss on perturbed example with perturbation restriction

Adversarial robustness:

- evaluate the ability of defending against an adversary who will attack the model
- Problem of robust (few-shot) meta-learner:
 - * meta-learners designed to learn with less training data, are easier to attack
 - Edmunds et al., revealed that simple attack can disturb MAML with success rate over 80%

Our focus:

目强不息

厚德载物

- select MAML as a typical meta-learner
- improve adversarial robustness of MAML

Few-shot Meta-learner Regular Model

Related Work

- ***** Meta-learning:
 - Model-Agnostic Meta-Learning(MAML)
 - Bayesian Model-Agnostic Meta-Learning
 - Hierarchically Structured Meta-learning(HSML)
 - many models are derived from MAML
- Adversarial attacks:
 - ***** FGSM: Fast Gradient Sign Method $x_a = x + \epsilon \operatorname{sign}(\nabla_x \mathcal{L}(x, y)).$
 - *** PGD:** improved version, iteratively generates perturbation & conduct projection
 - **C&W attack: optimization-based attack** $\min_{x} ||x x_a||_p c\mathcal{L}(x_a, y).$
- Robust meta-learner:
 - ADML: perturb both support and query data, make the inner gradient update and the metaupdate arm-wrestle with each other

Algorithm 1 Model-Agnostic Meta-Learning

Sample batch of tasks $\mathcal{T}_i \sim p(\mathcal{T})$

scent: $\theta'_i = \theta - \alpha \nabla_{\theta} \mathcal{L}_{\mathcal{T}_i}(f_{\theta})$

Update $\theta \leftarrow \theta - \beta \nabla_{\theta} \sum_{\mathcal{T}_i \sim p(\mathcal{T})} \mathcal{L}_{\mathcal{T}_i}(f_{\theta'_i})$

Evaluate $\nabla_{\theta} \mathcal{L}_{\mathcal{T}_{i}}(f_{\theta})$ with respect to K examples

Compute adapted parameters with gradient de-

Require: $p(\mathcal{T})$: distribution over tasks **Require:** α , β : step size hyperparameters

1: randomly initialize θ

2: while not done do

for all \mathcal{T}_i do

end for

9: end while

4:

5:

6:

7.

* Adversarial Querying: only perturb query data, more efficient and more robust

Method

Motivation: Focal Loss

- vast number of easy negatives overwhelms the object detector during training
- proposed to make the model focus on hard examples

 $\mathcal{L}_{FL}(p_t) = -(1-p_t)^{\gamma} log(p_t)$

- TAFL: Task-based Adversarial Focal Loss
- I. Sample->Task:
 - use cross entropy loss to represent focal loss

$$\mathcal{L}_{CE} = -log(p_t)$$
$$\mathcal{L}_{FL} = (1 - exp(-\mathcal{L}_{CE}))^{\gamma} \cdot \mathcal{L}_{CE}$$

extract the modulating factor term

$$M_{FL} = (1 - exp(-\mathcal{L}_{CE}))^{\gamma}$$

* applied to meta-learner? loss term represents sum of loss in a task rather than an example

Method

- II. Classification difficulty->Adversarial robustness:
 - **\diamond** objective of white-box attacks \mathcal{A} :

$$\mathcal{A}(x) \to \max_{x_a: ||x_a - x|| \le \epsilon} \mathcal{L}_{CE}(x_a)$$

* introduce difference between loss on clean and perturbed query data $\mathcal{L}_{AR}(\tau)$ to replace \mathcal{L}_{CE}

$$\mathcal{L}_{AR}(\tau) = max\left\{\mathcal{L}_{CE}\left(f_{\theta_{\tau}}, \mathcal{A}(x_q)\right) - \mathcal{L}_{CE}(f_{\theta_{\tau}}, x_q), \delta\right\}$$

rewrite modulating factor term and construct meta update loss

 $M_{TAFL}(\tau) = (1 - exp(-k\mathcal{L}_{AR}(\tau)))^{\gamma}$ $\mathcal{L}_{TAFL}(f_{\theta_{\tau}}, x_q) = M_{TAFL}(\tau) \cdot \mathcal{L}_{CE}(f_{\theta_{\tau}}, \mathcal{A}(x_q))$

* such factors are not function of θ to be minimized during gradient descent optimization

Experiment Design & Results

- Experimental setup :
 - datasets: Omniglot / MinilmageNet / CUB
 - ✤ sample 100 batches of test tasks, calculated with 95% confidence intervals

Robust accuracy:

- baselines: MAML, ADML, Adversarial Querying
- * 3 attacks for test: PGD, MI-FGSM, C&W

\underline{NZB}			Model/Attack	MiniImageNet dataset (5-way 1-shot)		
Attack	Omniglot	MiniImageNet	Model/Attack	PGD	MI-FGSM	C&W
PGD	(5-way 1-shot) $\epsilon = 0.1 step = 30$	(5-way 1-shot) $\epsilon = 0.01, step = 30$	MAML [7]	$0.42\pm0.06\%$	$0.01\pm0.01\%$	$14.38 \pm 0.36\%$
		$\epsilon = 0.01, step = 30$ $\epsilon = 0.01, step = 30$	ADML [11]	$28.53 \pm 0.48\%$	$28.19 \pm 0.56\%$	$26.77 \pm 0.41\%$
C&W	c = 10.0, step = 60	c = 1.0, step = 30	AQ [12]	$28.20 \pm 0.48\%$	$27.94 \pm 0.54\%$	$26.82 \pm 0.42\%$
	•		TAFL(ours)	$29.53 \pm \mathbf{0.60\%}$	$28.94 \pm 0.61\%$	$\textbf{27.75} \pm \textbf{0.44\%}$

Experiment Design & Results

- Visualization on adversarial robustness loss(LAR):
 - ***** distribution of \mathcal{L}_{AR} over tasks when testing different defense methods
 - * estimate the distribution via kernel density estimation(KDE) method
 - ***** our method reduce the proportion of tasks with high \mathcal{L}_{AR}

***** Effects of different parameters:

- * γ is a more sensitive parameter
- * robust accuracy increases first, and then reduces with γ increases

Conclusion

- Proposed TAFL focus more on tasks which are hard to protect
- the proportion of adversarially fragile tasks are reduced via focal effect
- result in promotion of overall adversarial robustness

THANK YOU

