On the Impact of Lossy Image and Video Compression on the Performance of Deep Convolutional Neural Network Architectures

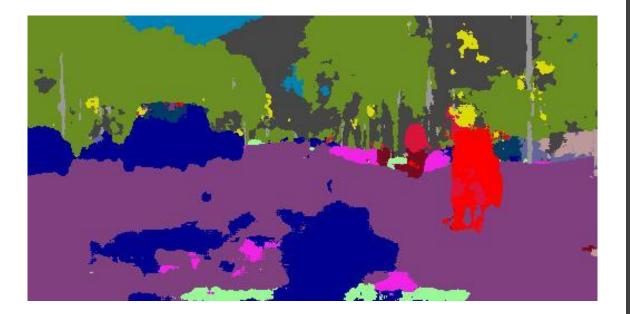
Matt Poyser, Amir Atapour-Abarghouei, Toby Breckon

Department of Computer Science

What is Lossy Compression?

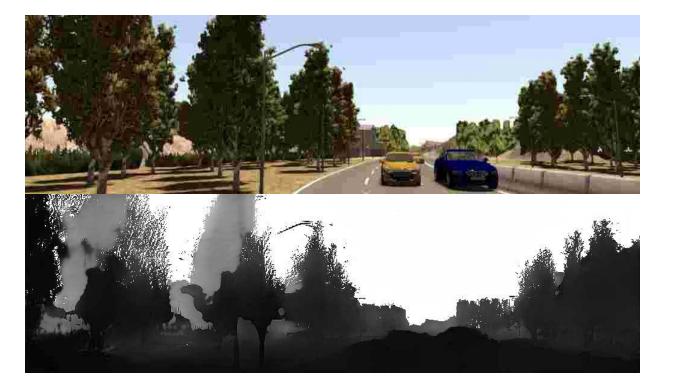
- JPEG
- H.264
- Removal of information

5 networks for 5 domains 2 goals


- Segmentation (SegNet)
- Depth estimation (GAN)
- Pose estimation (end-to-end CNN)
- Object detection (region-based CNN)
- Human action recognition (two-stream)

Segmentation with SegNet

V. Badrinarayanan, A. Kendall, and R. Cipolla, "Segnet: A deep convolutional encoder-decoder architecture for image segmentation," Computing Research Repository, vol. abs/1511.00561, 2015



Compression Rate	global ACC	mean ACC	mIoU
95	0.911	0.536	0.454
75	0.909	0.530	0.448
50	0.904	0.523	0.438
15	0.814	0.459	0.338
10	0.794	0.421	0.304
5	0.782	0.364	0.265
Compression Rate	global ACC	mean ACC	mIoU
Compression Rate 95	global ACC 0.911	mean ACC 0.536	mIoU 0.454
• • •	<u> </u>		
95	0.911	0.536	0.454
95 75	0.911 0.910	0.536 0.522	0.454 0.446
95 75 50	0.911 0.910 0.908	0.536 0.522 0.503	0.454 0.446 0.431

Depth Estimation with GAN

• We need a task decoupled from reconstructing high quality output

Compression Rate	Abs. Rel.	Sq. Rel.	RMSE
95	0.0112	0.0039	0.0588
75	0.0116	0.0039	0.0589
50	0.0123	0.0038	0.0587
15	0.0146	0.0040	0.0599
10	0.0192	0.0042	0.0617
5	0.0283	0.0060	0.0749
Compression Rate	Abs. Rel.	Sq. Rel.	RMSE
95	0.0112	0.0039	0.0588
95 75	0.0112 0.0113	0.0039	0.0588 0.0560
75	0.0113	0.0035 0.0029 0.0034	0.0560
75 50	0.0113 0.0103	0.0035 0.0029	0.0560 0.0502

Object Detection with FasterRCNN

Human Pose Estimation

Compression Rate	Top-1 Spatial	Top-1 Motion	Top-1 Fusion		
23	78.8736	70.1198	83.5485		
25	78.7999	44.9225	73.6030		
30	78.4563	37.3598	72.2329		
40	74.5704	38.9565	70.8803		
50	44.1977	15.3267	41.4777		
Compression Rate	Top-1 Spatial	Top-1 Motion	Top-1 Fusion		
23	78.8736	70.1198	83.5485		
25	78.9056	39.7192	71.7616		
30	78.5620	34.3161	70.5765		
40	75.9450	9.2550	67.1227		
50	62.5165	6.7300	56.2279		

Human Action Recognition

Conclusions

- Can afford to compress to 15% of the original size, across all domains
- Networks that employ a decoder subnetwork are resilient. We posit that the up-sampling within its pooling layers are responsible for the resilience to compression.

References

- A. Atapour-Abarghouei and T. Breckon, "Real-time monocular depth estimation using synthetic data with domain adaptation," in Proc. Computer Vision and Pattern Recognition. IEEE, June 2018, pp. 1–8.
- K. Simonyan and A. Zisserman, "Two-stream convolutional networks for action recognition in videos," in Advances in Neural Information Processing Systems 27, 2014, pp. 568–576.
- S. Ren, K. He, R. B. Girshick, and J. Sun, "Faster R-CNN: towards real-time object detection with region proposal networks," Computing Research Repository, vol. abs/1506.01497, 2015.
- V. Badrinarayanan, A. Kendall, and R. Cipolla, "Segnet: A deep convolutional encoderdecoder architecture for image segmentation," Computing Research Repository, vol. abs/1511.00561, 2015
- Z. Cao, T. Simon, S.-E. Wei, and Y. Sheikh, "Realtime multi-person 2d pose estimation using part affinity fields," in Conference on Computer Vision and Pattern Recognition, 2017, pp. 1302–1310