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The importance of vigilance

• Vigilance plays an essential role in most
human activities, especially in driving.

• Drowsiness detection could give a massive
benefit in the prevention of both non-fatal
and fatal crashes.

• A considerable percentage of road accidents
has been caused by sleep and fatigue.
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Physiological signals: Electroencephalography (EEG)

• Most promising drowsiness indicator.

• Many approaches based on analysis in
frequency domain.

• Delta, theta, and alpha activity
characterizes the EEG signal during driver
fatigue



SEED-VIG data set

Experimental setup: 
simulated driving scenario

Neuroscan system:
channels configuration

Wei-Long Zheng and Bao-Liang Lu, A multimodal approach to estimating vigilance using EEG and forehead EOG. Journal of Neural Engineering, 14(2): 026017, 2017.
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Feature Extraction: 1D-Local Binary Pattern
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Generic user vs User-specific
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Settings optimization: accuracy
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New metrics for temporal response 

Two distinct class transition considered:

𝐴𝑤𝑎𝑘𝑒 → 𝑇𝑖𝑟𝑒𝑑 𝐴𝑇 𝑇𝑖𝑟𝑒𝑑 → 𝐷𝑟𝑜𝑤𝑠𝑦 𝑇𝐷

∆𝑥𝑦= 𝑡 ℎ𝑖𝑡 𝑥𝑦 − 𝑡 𝑐ℎ𝑎𝑛𝑔𝑒 𝑥𝑦

Ratio of successfully recognized class transitions (hits) to 
the total count of state changes.

Mean of seconds of delay with which the response of the 
classifier correctly identifies a state change.

Rate of misclassified “awake” samples. 

Percentage of hits that happen on the first sample of the 
state change.
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Conclusions

• 1D-LBP first application to driver’s state monitoring.

• Introduction of novel performance parameters for the transition's detection

and the related time delay.

• Strong effectiveness of the proposed method in detecting the awake-to-

tired transitions (only 6 s of delay and the best hit rate).

• Overall performance is not yet good enough to develop a BCI for assessing

the driver’s vigilance in real environments.
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