Motion segmentation with pairwise matches and unknown number of motions

Federica Arrigoni¹, Luca Magri² and Tomas Pajdla³

¹DISI, University of Trento (Italy) – federica.arrigoni@unitn.it ²DEIB, Politecnico di Milano (Italy) – luca.magri@polimi.it ³CIIRC, CTU in Prague (Czech Republic) – pajdla@cvut.cz

ICPR Online, 10-15 January 2021

Introduction

Motion segmentation: the goal is to classify points in multiple images based on the moving object they belong to.

Assumption: the number of motions is unknown.

Introduction

Scenario: two-frame correspondences are available

Contribution

In this paper we propose a segmentation approach that combines local/partial results independently obtained from pairs of images.

We extend a recent work to the case of an **unknown** number of motions.

F. Arrigoni and T. Pajdla Robust motion segmentation from pairwise matches ICCV (2019)

1. Motion segmentation is solved independently on different image pairs, by fitting an **unknown** number of **fundamental matrices** to correspondences.

L. Magri and A. Fusiello T-Linkage: a continuous relaxation of J- Linkage for multi-model fitting CVPR (2014)

2. Such partial results are combined in order to get a multi-frame segmentation.

Idea: all the two-frame segmentations involving a fixed image provide an estimate for the segmentation of that image.

Two challenges have to be addressed:

- ambiguity each two-frame segmentation considers its own labelling of the motions;
- **noise** each two-frame segmentation may contain some errors.

Graph: each vertex corresponds to one image pair; an edge is drawn between two vertices each time the associated pairs have one image in common.

- For each edge a permutation is computed via a linear assignment problem.
 - H. W. Kuhn The Hungarian method for the assignment problem Naval Research Logistics Quarterly 2 (1955)
- Permutations for all the nodes are computed by permutation synchronization with unknown number of motions.
 - E. Maset, F. Arrigoni, and A. Fusiello Practical and efficient multi-view matching ICCV (2017)
 - R. Tron, X. Zhou, C. Esteves, and K. Daniilidis Fast multi-image matching via density-based clustering ICCV (2017)

For each point in a given image, several putative labels are available: the most frequent label (**mode**) is chosen. Outlier/missing labels are ignored.

This procedure is repeated for all the images in order to produce the output segmentation.

・日マ・山口マ・山田・ 山田・ 山口・

Experiments

					Our Method		Mode		Synch	
Dataset	d	n	р	\widehat{d}	Error[%]	Points[%]	Error[%]	Points[%]	Error[%]	Points[%]
Pen	2	6	4550	2	1.55	89.08	0.58	80.07	0.82	83.23
Pouch	2	6	4971	2	1.39	60.79	3.79	65.34	4.15	69.89
Needlecraft	2	6	6617	2	1.80	67.07	0.83	72.81	1.04	76.76
Biscuits	2	6	13158	2	1.12	90.42	0.47	84.47	0.51	87.28
Cups	2	10	14664	2	2.05	71.31	0.56	65.42	1.01	69.82
Tea	2	10	32612	2	0.69	85.21	0.29	81.70	28.12	52.21
Food	2	10	36723	2	0.78	82.34	0.36	76.19	0.56	80.66
Penguin	2	6	5865	2	1.36	66.60	0.76	69.17	44.21	46.97
Flowers	2	6	7743	2	1.51	75.50	1.23	73.65	1.62	77.28
Pencils	2	6	2982	2	3.09	51.01	3.80	65.33	27.53	40.44
Bag	2	7	6114	2	2.78	52.91	1.52	57.95	25.92	54.27
Bears	3	10	15888	3	3.48	68.21	4.82	73.65	38.95	74.59

[Dataset] https://github.com/federica-arrigoni/ICCV_19

[Mode] F. Arrigoni and T. Pajdla Robust motion segmentation from pairwise matches ICCV (2019)

[Synch] F. Arrigoni and T. Pajdla Motion segmentation via synchronization ICCV Workshops (2019)

Conclusion

- We presented a novel solution to motion segmentation with two-frame correspondences, which is a poorly studied task.
- Differently from previous works considering the same assumptions, our approach can handle an **unknown** number of motions, hence it is more general and practical.
- Our method achieves comparable or better accuracy than its competitors on existing datasets, while correctly estimating the number of moving objects in every scene.

Thank you for your attention!