G

GRAND VIEW

Breast Anatomy Enriched Tumor Saliency Estimation

Fei Xu

Outline

- Challenges
- The proposed Approach
- Experimental Results
- Contributions

Challenges

- Sensitivity of current methods to varied qualities of the images, such as low contrast, more artifacts, etc.;
- Challenging to extract domain knowledge because of the various tumor shapes, contours, sizes, etc.;
- Lack of large open-access datasets with annotated images for training.

The proposed Approach - Flowchart

Tumor saliency estimation is to discover the tumor regions that draw radiologists' attention by modeling the human visual mechanism.

Semantic Breast Anatomy

• Anatomy knowledge: breast structure, candidate tumor location, and tumor appearance characteristic

The visual effects of refining SBA maps. (a) original images; (b) ground truths; (c) *SBA* maps generated by U-Net[1]; (d) the non-semantic layers [2]; (e) the refined SBA maps; (f) the FGs based on (c); and (g) the FGs based on (e). The different colors identified different layers in SBA maps (c) and (e), respectively.

Optimization

• Model the adaptive-center bias (*C*), foreground (*F*) and background (*T*) cues and correlation (quadratic term) hypothesis of human visual mechanism.

minimize
$$E(S) = S^{T} \left(-(\alpha \ln(C) + \beta \ln(F)) \right) +$$

 $\gamma (1 - S)^{T} (-\ln(T)) + \sum_{i=1}^{N} \sum_{j=1}^{N} (s_{i} - s_{j})^{2} r_{ij} D_{ij}$ (1)
subject to $0 \le s_{i} \le 1, i = 1, 2, \cdots, N;$
 $B^{T}S = 0, B = (b_{1}, b_{2}, \cdots b_{N})^{T}, b_{i} = \{0, 1\}$
 $r_{ij} = exp(-|I'_{i} - I'_{j}|/\sigma_{1}^{2})$ (2)
 $D_{ij} = exp(-||rc_{i} - rc_{j}||_{2}/\sigma_{2}^{2})$ (3)

where the terms r_{ij} and D_{ij} define the similarity and the spatial distance between the *i*th and *j*th regions, respectively

(a) (b) (c) (d) (e) (f) (g)

Experimental Results (1)

The visual effects of detecting the saliency maps by the five models. (a) original images (b)ground truths (c)-(g) the saliency maps generated by [3], [4], [2], OUR_BG1 and OURs, respectively.

Experimental Results (2)

Overall performance: The P-R curves, MAE and $F_{measure}$ values of the five models.

Experimental Results (3)

Model	Training Setting	DSC	JI (IOU)	TPR	FPR	ACC	AUC- ROC
U-Net[1]	LR = 1·10 ⁻⁴	0.891 (±0.005)	0.817 (±0.008)	0.900 (±0.009)	0.120 (±0.027)	0.977 (±0.002)	0.950 (±0.006)
[5] +saliency	LR =	0.890	0.832	0.904	0.092	0.979	0.955
maps[2]	1.10-4	(±0.013)	(±0.014)	(±0.016)	(±0.008)	(±0.001)	(±0.002)
[5] +saliency							
maps by this	LR =	0.908	0.846	0.909	0.089	0.983	0.961
proposed method	1.10-4	(±0.011)	(±0.012)	(±0.016)	(±0.019)	(±0.004)	(±0.008)

Segmentation comparison with the other CNN models

Contributions

- The refining SBA strategy is effective even when the semantic information could not be generated accurately due to the limited number of training images.
- Achieve the best performance among the latest TSE models and increasing 10% of F_{measure} on the public Breast Ultrasound images dataset.
- Incorporating better saliency maps into other CNN models will enhance the segmentation performance.

References

[1] O. Ronneberger, P. Fischer, and T. Brox, "U-net: Convolutional networks for biomedical image segmentation," International Conference on Medical image computing and computer-assisted intervention, 2015, pp. 224–241.

[2] F. Xu, Y. Zhang, H. D. Cheng, B.Zhang, J. Ding, C. Ning, and Y.Wang, "Tumor Saliency Estimation for Breast Ultrasound Images via Breast Anatomy Modeling," arXiv preprint arXiv:1906.07760, 2019. Unpublished.

[3]H. Shao, Y. Zhang, M. Xian, H. D. Cheng, F. Xu, and J. Ding, "A saliency model for automated tumor detection in breast ultrasound images," IEEE International Conference on Image Processing, 2015, vol. 2015-December, pp. 1424–1428

[4] F. Xu, Y. Zhang, M. Xian, H. D. Cheng, B.Zhang, J. Ding, C. Ning, and Y.Wang. "A Hybrid Framework for Tumor Saliency Estimation.," International Conference on Pattern Recognition, 2018, vol. 2018-August, pp. 3935–3940.

[5] A. Vakanski, M. Xian, P. Freer. "Attention Enriched Deep Learning Model for Breast Tumor Segmentation in Ultrasound Images.," Ultrasound in Medicine & Biology, 2020. In press.

Thanks.