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Stationary features detected with

Akatsuki observation

* Large bow-shaped structures observed by LIR and UVI

* Indicative of atmospheric gravity waves, significant in
terms of the planet’ atmospheric system

 Not a few features found so far ... an automatic
detection technique is needed
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Examples of a stationary wave observed at (a) 283 nm and (b) 365 nm [Kitahara et al., 2019]



mage recognition using deep
earning

 Automatic, robust, and accurate
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Example of classification task using deep learning
[Image from Towards Data Science HP]



Data preprocessing
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Variational auto-encoder (VAE)

z ~ N(u(X), 0(X))

Advantages:

* Have good results in dimensionality reduction fields
* Well-known for an image reconstruction method

Normal class Anomaly class
(not stationary feature) (stationary feature)




Overview of the system

Training Reconstructed
Image

Decoder
Po(X|2)

z ~ N(u(X),a(X))

Encoder
q4(z|X)

Learn only from the normal class images
=Extract the features of normal cloud structures

Test Stationary
feature

Reconstructed Reconstruction
Image Error

Decoder
Pe(X|2)

z~ N(u(X),o(X))

Anomaly
detection

Evaluate using the test data including the normal class and anomaly classes



Result
| |vAE-based

AUROC 0.865 Normal
Precision 0.861

Recall 0.976
Precision — TP
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Attention map (Grad-CAM)

e Attention method that visualizes the region where
the neural network sees when classifying images

Rectified Conv FC Layer
Feature Maps Activations
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Highlight the important
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VAE + Attention map

1. Train VAE 2. Train convolutional neural network
Normal
pattern 7 CNN
Stationary &
pattern features ’

3. Test

SRR REE U Weighted reconstructed error

Anomaly
detection

Attention .

CNN

Gain the important regic

for classification



Result
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Conclusion

* Automated detection of stationary features seen in
UVi

* Using attention maps to focus on the important
region further improved the accuracy



