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Datasets

There are three publicly available datasets:

CUHK Avenue[1] ShanghaiTech[2] IITB-Corridor[3]

16 training videos 330 training videos 208 training videos
21 test videos 107 test videos 150 test videos
Short-term anomaly Multi-camera Close to real world

Table: Available Datasets

Since we are concerned only with human anomaly, we will be working
on subsets of above datasets i.e., HR-Avenue, HR-ShanghaiTech and
HR-IITB Corridor (proposed by us)
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Preprocessing Pipeline: Trajectory Extraction

Figure: Trajectory Extraction Pipeline

Used a network with combined detection and pose estimator

Pose detector output is 17 keypoints i.e. (x,y) coordinates
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Preprocessing Pipeline: Normalization

Keypoints obtained from pose estimator are not normalized

This causes increase in error due to closer entities

To correct depth effect we propose bounding box normalization as
shown:

Figure: Left: Without Normalization Right: With Normalization
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Preprocessing Pipeline: Data Augmentation

It’s better to take small tracks of person instead of long corrupted
tracks

The output of Pose tracker is affected by illumination, depth, occlusion
Tracking in multi person environment is difficult due to overlapping
trajectories

We use sliding window to divide trajectories into multiple tracks

This helps in data augmentation as well
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PoseCVAE: High Level Flow

Figure: High Level Flow Diagram
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PoseCVAE: Architecture

Figure: Encoder

Figure: Decoder
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Imitating Abnormal Pose Trajectory in the Latent Space

To maximise the separation between normal and abnormal classes, we
split a decoder branch (Dec1) which gives class probability, Pk as
output

Normal Class is labelled ‘0’, Abnormal class is labelled ‘1’

Different possibilities for the concatenated latent vector:

Znormal ≡ z ∼ Q(.) || Enc(Ck) (1)

Zabnormal ≡ z ∼ N (0, I ) || Enc(C ′k) (2)

Z̃abnormal ≡ z ∼ MoG || Enc(Ck) (3)

The output of the classifier branch is mapped as follows:

Dec1(MLPDec(Znormal)) −→ 0 (4)

Dec1(MLPDec(Z̃abnormal)) −→ 1 (5)
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Loss Function

Used combination of three loss functions during training:

Reconstruction Loss: Maximising the conditional expectation
translates into minimising MSE:

Lk1(Yk , Ŷk) =
∣∣∣∣∣∣Ŷk − Yk

∣∣∣∣∣∣2
2

(6)

KL divergence Loss: Minimise the KLD to maximise the conditional
likelihood:

Lk2(µ, σ) = KL[N (µ(Yk ,Ck), σ(Yk ,Ck)) || N (0, I ) ] (7)

BCE loss: To make normal and abnormal latent samples more
distinguishable:

Lk3(yk ,Pk) = −(yk logPk + (1− yk) log(1− Pk)) (8)
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Training Strategy

Input: future trajectory to be predicted, length = ‘T’

Condition: past trajectory of length ‘T’

Aim: learn conditional posterior and reconstruct the input given the
condition

We train in 3 stages:

Stage 1: Self Supervised Learning (Pre-training the Conv. Encoder
and decoder)

Objective: Reconstruct the given trajectories

Stage 2: Unsupervised Learning (Training the PoseCVAE)

Objective: Reconstruct the given trajectory given the past trajectory
and minimise the KLD (Maximising the conditional likelihood)

Stage 3: Unsupervised with OoD sample generation and
minimise BCE (Fine-tuning the PoseCVAE framework)

Objective: For normal latent points: Minimise the KLD, MSE and
BCE, for abnormal latent points: Minimise the MSE and BCE
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Inference: Obtaining the Frame-level Anomaly Score

Input: Noise randomly sampled from standard normal

Condition: past trajectory, length = ‘T’

Output: future trajectory, length = ‘T’

Obtain the corresponding squared difference between prediction and
GT

Average it to obtain the final squared difference for a given time
instant (T + 1) and a given person (k), δk(T + 1)

Obtain δk(i) ∀ i εTk , ∀k . Here Tk is the entire track of person ‘k’

Frame-level anomaly score, ∆(t0), at t = t0 , is obtained as shown:

∆(t0) = max
j ∈S(t0)

δj(t0) (9)

Here S(t0) refers to the set of all person IDs that appear in the video at
t = t0
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Results: Visualisation

Figure: Green skeleton is from the predicted trajectory and Blue one is from the
ground truth. Notice the greater dissimilarity between the two skeletons for
abnormal motion/ poses.
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Results: Frame-level Anomaly Score Plot

Figure: Frame-level anomaly score plot, Video 3 from the test set, HR-Avenue
(HR version of Avenue Dataset[1]). Notice the frame-level anomaly score is lower
for normal frames and shoots up for abnormal frames.
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Results: AUC Score

HR-Avenue HR-ShanghaiTech HR-IITB

Hasan et al. [4] 84.80 69.80 -
Liu et al. [2] 86.20 72.70 -
Luo et al. [5] - - -

Morais et al. [6] 86.30 75.40 68.07
Rodrigues et al. [3]∗ 88.33 77.04 -

Ours 87.78 75.86 70.60

Avenue ShanghaiTech IITB Corridor

Hasan et al. [4] 70.20 69.80 -
Liu et al. [2] 84.90 72.80 64.65
Luo et al. [5] 81.71 - 68.00

Morais et al. [6] - 73.40 64.27
Rodrigues et al. [3]∗ 82.85 76.03 67.12

Ours 82.10 74.90 67.43
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Results: Comparison with the SOTA

T Predictions/Iteration AUC

3 only 2 72.05%
Rodrigues et al.[3] 3 & 5 4 73.39%
(Multi-timescale) 3,5 & 13 6 75.65%

3,5,13 & 25 8 77.04%

Ours (One-timescale) 7 1 75.86%

Table: Frame-level AUC score comparison between [3] and Our method on
HR-ShanghaiTech for different timescales
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Ablation Study: Effect of Multistage Training

Figure: Latent space representation of the test set trajectories obtained from
PoseCVAE post- training completion. Notice the increase in the separation
between the normal and abnormal trajectory classes after introduction of stage 3
in the training strategy.
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Shortcomings: Videos in which we do not perform well

We do not perform well on Video 25 and Video 32 of HR-Avenue

We achieve AUC scores of ≈ 36% and ≈ 44% respectively on both of
the videos

If we calculate the AUC score excluding the two videos, we get an
overall AUC score of 90.87% (Current: 87.78%)

Reason: Both these videos, the anomaly is due to the person roaming in a
restricted area.

We accept this as a shortcoming of our framework as we
capture only pose based information and discard locality during
pre-processing
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HR-IITB Corridor Dataset

We remove all the object driven anomalies from the original IITB-Corridor
dataset proposed in [3]

Test split: 150 videos, Train split: 208 videos

Activities grouped into different categories such as: Fighting,
Chasing, Cycling, Loitering, Sudden Running, Protests, Carrying
Objects, Bag Exchange, Playing with a ball and Hiding

We construct the HR-IITB dataset as shown:

Included Videos from IITB-Corridor: Fighting, Chasing, Cycling,
Loitering, Sudden Running and Protests. A total of 78 videos
Removed Videos from IITB-Corridor: Carrying Objects, Bag Exchange,
Playing with a ball and Hiding. A total of 72 videos
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The End
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