

Edge-Aware Monocular Dense Depth Estimation with Morphology

Speaker: Zhi Li Conference: ICPR

Introduction

Zhi Li:

School of Artificial Intelligence, University of Chinese Academy of Sciences

Authors

Institute of Automation, Chinese Academy of Sciences

The others:

- Xiaoyang Zhu, Haitao Yu, Qi Zhang, Yongshi Jiang
- Institute of Automation, Chinese Academy of Sciences

Introduction

Introduction

a: Input image b: Morphological edge c: Depth map Fig 1. The edges and the detph map proposed in our work. Dense depth maps play an important role in Computer Vision and **AR** (Augmented Reality).

We present a novel algorithm that produces low latency, spatio-temporally smooth **dense depth maps** using only a CPU.

The depth maps exhibit sharp discontinuities at depth edges in low computational complexity ways.

METHOD

Fig 2. Our whole algorithm's pipeline

- Get the sparse reconstruction from DSO-SLAM system.
- Extract coarse depth edges by morphology operations.
- Depth edges refinement by improved Canny edge detector.
- Construct an improved optimization solver to propagate the sparse depth values and achieve depth densification.

Fig 3. The whole depth edges extraction

- Extract coarse depth edges by morphology operations.
- Depth edges refinement by improved Canny edge detector.

METHOD

Densification

We propose a **novel optimization problem** to propagate the sparse depth values.

Fig 4. four aspects included by The depth densification

Speed up the solver :

- hierarchical iteration.
- ➤ an effective initialization
- ➤ different numbers of iterations divided by keyframes.
- ➤ a bilateral filter

Results

Qualitative Comparisons

Results

Quantitative Comparisons

Two Evaluation Metrics:

> Sharp depth edges

Dense depth maps need to produce a sharp depth distribution across the depth edges.

Smooth texture edges

The texture areas should maintain smoothness without large depth differences.

Algorithm	Edge Error	Texture Error
Petschnigg et al	/	4.12
Barron et al	/	5.10
Holynski et al	0.95	2.52
Ours	0.34	2.13

G. Petschnigg, R. Szeliski et al. Digital photography with flash and no-flash image pairs."
J. T. Barron and B. Poole, "The fast bilateral solver "in European Conference on Computer Vision.
A. Holynski and J. Kopf, "Fast depth densification for occlusion-aware augmented reality."

THANK YOU!