

Stroke Based Posterior Attention for Online Handwritten Mathematical Expression Recognition

Changjie Wu, Qing Wang, Jianshu Zhang, Jun Du*, Jiaming Wang

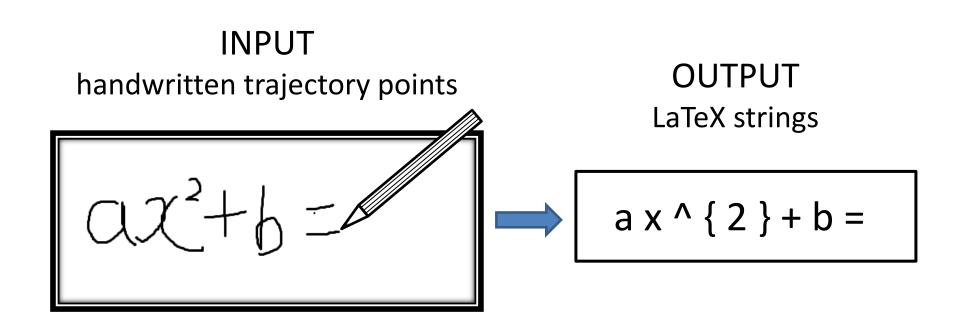
NELSLIP OF USTC

Presented by Changjie Wu Email: wucj@mail.ustc.edu.cn

ICPR 2020

1 Introduction

- 2 Proposed methods
- ③ Experiments
- **(4)** Conclusion

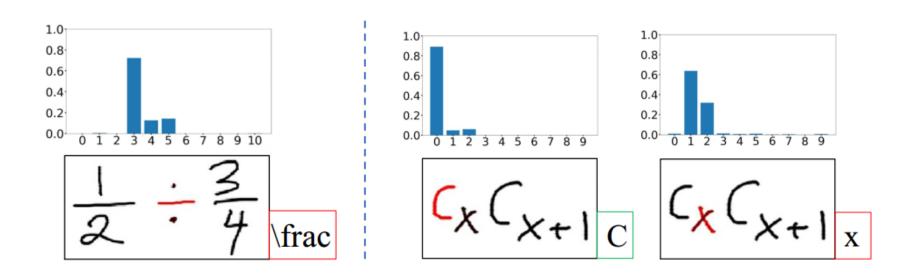


ICPR 2020

Introduction

Online Handwritten Mathematical Expression Recognition (OHMER)

ICPR 2020



National Engineering Laboratory

Introduction

OHMER Challenges

- Symbol segmentation
- 2D Structural analysis

ICPR 2020

National Engineering Laboratory

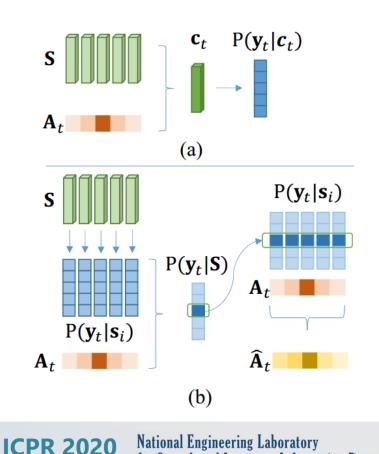
Two ways to improve the previous model (TAP)

1 Posterior attention mechanism

2 Stroke level features

Posterior attention is better to be implemented on strokelevel features than point-level features as the output probabilities generated by stroke is more convincing than generated by point.

Proposed methods

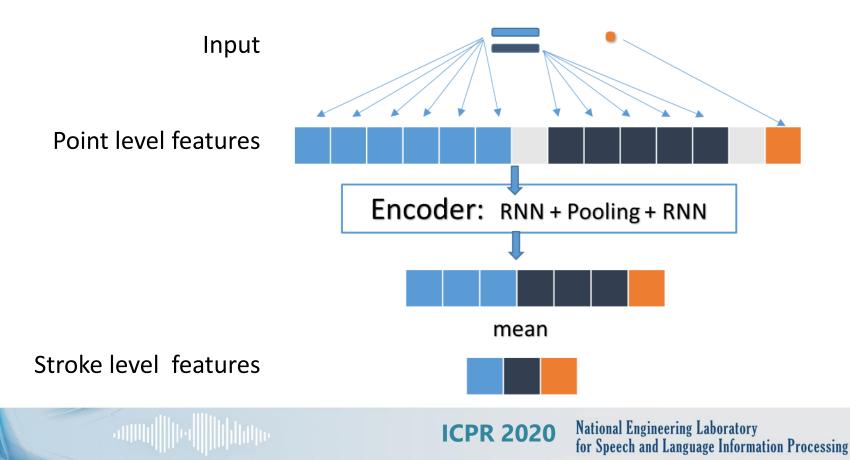

Two ways to alleviate this problem:

- 1 Posterior attention mechanism
- 2 Stroke level features

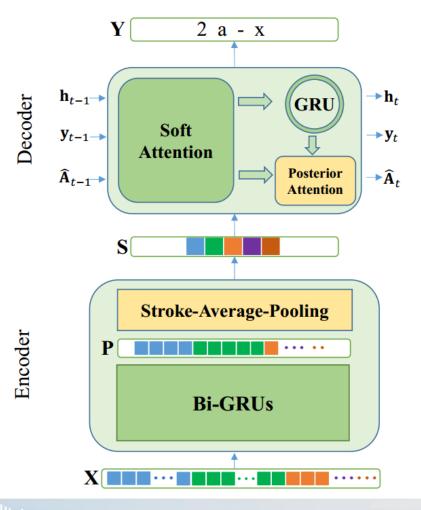
Simplified flowchart:

(a) Soft attention

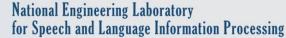
(b) Posterior attention



Proposed methods


Two ways to alleviate this problem:

- D Posterior attention mechanism
- 2 Stroke level features



Proposed methods: overall architecture

Network Architecture

ICPR 2020

Evaluation of Posterior Attention Mechanism

TABLE I

COMPARISON OF RECOGNITION PERFORMANCE (IN %) ON CROHME 2014 AND CROHME 2016 BETWEEN SYSTEM I TO IV

System	Attention	Feature	CROH	ME 2014	CROHME 2016		
		Level	WER	ExpRate	WER	ExpRate	
Ι	soft	point	13.34	50.71	14.67	45.95	
II	posterior	point	11.97	51.28	13.21	47.28	
III	soft	stroke	13.29	50.91	14.53	47.60	
IV	posterior	stroke	10.44	54.26	12.68	51.75	

ICPR 2020

National Engineering Laboratory

Experiments

Attention visualization

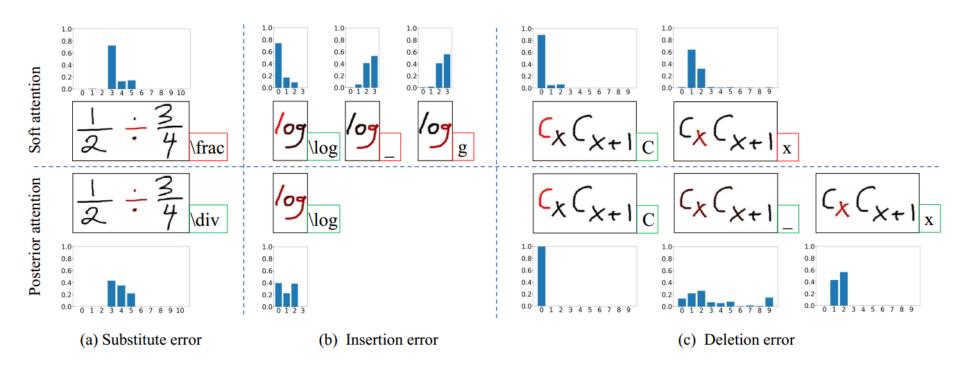


Fig. 3. Three examples of attention visualization with soft attention and posterior attention. The horizontal axis of the histogram represents the serial number of the strokes, and the vertical axis represents the value of the attention weight.

ICPR 2020

National Engineering Laboratory

Comparison with State-of-the-arts

TABLE IIICOMPARISON OF EXPRATE (IN %) ON CROHME 2014 AND CROHME 2016

System	CROHME 2014				CROHME 2016			
	ExpRate	≤ 1	≤ 2	≤ 3	ExpRate	≤ 1	≤ 2	≤3
Wiris [10]	-	-	-	-	49.61	60.42	64.69	-
Tokyo [10]	-	-	-	-	43.94	50.91	53.70	-
Merge 9 [26]	29.91	39.94	44.96	50.15	27.03	35.48	42.46	-
PGS [27]	48.78	66.13	73.94	79.01	45.60	62.25	70.44	75.76
TAP	50.71	65.42	68.73	69.54	45.95	60.77	63.85	64.57
Res-BiRNN [28]	53.35	64.50	70.08	72.92	47.95	60.16	65.56	68.61
Ours	54.26	69.64	72.65	73.26	51.75	65.18	68.27	68.99

ICPR 2020 N

Conclusion

- 1 The posterior attention mechanism is better than soft attention mechanism
- 2 The stroke-level feature vectors which contain enough classification information can calculate posterior attention accurately
- 3 The proposed stroke based posterior attention exhibits higher performance than previous methods.

Thanks for listening

ICPR 2020

National Engineering Laboratory for Speech and Language Information Processing