PIN: A Novel Parallel Interactive Network for Spoken Language Understanding

Peilin Zhou, Zhiqi Huang, Fenglin Liu, Yuexian Zou* ADSPLAB, School of ECE, Peking University

Introduction

Spoken Language Understanding

• It typically involves intent detection (ID) and slot filling (SF) tasks.

Intent Detection

- ID is a semantic **text classification** problem
- Learning: f: X → Y that maps an input sequence x to its label category y

Slot Filling

- SF is often modeled as a **sequence labeling task** with explicit alignment
- Learning: f:X→Y that maps an input sequence x to its label sequence y

Intent	Book	Res	taurant «					
Utterance	Book	a	restaurant	on	next	fall	for	5
	ļ	ţ	Ļ	Ļ	Ļ	Ļ	ţ	Ļ
Slots	Ο	0	B-restaurant_type	eΟB	-timeRange I	[-timeRan	ge O E	8-party_size_number

Introduction

Spoken Language Understanding

• Intent detection and slot filling are associated with each other

Introduction

Limitation & Challenge:

- Local context information is not fully exploited in their models, ignoring the intuition that local context is a useful architectural inductive prior for SF.
- Many methods fail to take full advantage of the supervised signals due to their implicit or unidirectional modeling style of the intent-slot relations.

Motivation of our work:

We propose a novel Parallel Interactive Network (PIN) to address above issues:

- A Gaussian self-attentive encoder is introduced to better capture local structure and contextual information at each token
- We design a Intent2Slot module and a Slot2Intent module to model the bidirectional information flow between SF and ID.

Proposed method

Parallel Interactive Network (PIN)

 The PIN consists of the Utterance Representation Module, the Intent2Slot Module, the Slot2Intent Module and a Cooperation Mechanism.

Parallel Interactive Network (PIN)

Utterance Representation Module

We use BiLSTM with Gaussian self-attention mechanism to leverage both advantages of local structure and contextual information for a given utterance, which are useful for ID and SF tasks.

 $\mathbf{E} = \mathbf{H} \bigoplus \mathbf{C}$

 $\vec{h}_i = \overrightarrow{\text{LSTM}} \left(\phi^{\text{emb}}(x_i), \vec{h}_{i-1} \right) \quad \overleftarrow{h}_i = \overleftarrow{\text{LSTM}} \left(\phi^{\text{emb}}(x_i), \vec{h}_{i+1} \right)$ $\mathbf{H} = (h_1, h_2, \dots, h_T) \quad \mathbf{C} = (c_1, c_2, \dots, c_T) \quad \begin{array}{c} h_i = \stackrel{\rightarrow}{h_i \bigoplus h_i} \\ \boldsymbol{\nabla} \cdots \end{array}$ $c_i = \sum \square$ Softmax $(-|wd_{i,j}^2 + b| + (x_i \cdot x_j))x_j$

Slot2Intent Module

Intuitive Slot Decoder $\mathbf{h}_{t}^{IS} = LSTM(\mathbf{h}_{t-1}^{IS}, \mathbf{y}_{t-1}^{IS} \oplus \mathbf{e}_{t})$ $\mathbf{y}_{t}^{IS} = \operatorname{softmax}(\mathbf{W}_{h}^{IS}\mathbf{h}_{t}^{IS})$

Rational Intent Decoder $\mathbf{h}_{t}^{RI} = LSTM(\mathbf{h}_{t-1}^{RI}, \mathbf{y}_{t-1}^{RI} \oplus \mathbf{y}_{t}^{IS} \oplus \mathbf{e}_{t})$ $\mathbf{y}_{t}^{RI} = \operatorname{softmax}(\mathbf{W}_{h}^{RI}\mathbf{h}_{t}^{RI})$

Intent2Slot Module

The Intent2Slot Module has the similar structure as the Slot2Intent Module but switches the tasks for the two decoders.

Intuitive Intent Decoder

Rational Slot Decoder

Cooperation Mechanism

 $r_t^S = \text{softmax}(\text{MLP}(\mathbf{h}_t^{RS}))$

 $r_t^I = \text{softmax}(\text{MLP}(\mathbf{h}_t^{RI}))$

 $h_t^S = \mathbf{h}_t^{RS} \odot r_t^S + \mathbf{h}_t^{IS} \odot (1 - r_t^S)$ $h^{I} = \sum_{t=1}^{T} \square \mathbf{h}_{t}^{RI} \odot r_{t}^{I} + \mathbf{h}_{t}^{II} \odot (1 - r_{t}^{I})$

Experiment Results

Model		SNIPS		ATIS			
Wodel	Intent (Err)	Slot (F1)	Overall (Acc)	Intent (Err)	Slot (F1)	Overall (Acc)	
Recursive NN [43]	2.7	88.3	-	4.6	94.0	-	
Dilated CNN, Label-Recurrent [44]	1.7	93.1	-	1.9	95.5	-	
Attention Bi-RNN [5]	3.3	87.8	74.1	8.9	94.2	78.9	
Joint Seq2Seq [7]	3.1	87.3	73.2	7.4	94.2	80.7	
Slot-Gated Model [4]	3.0	88.8	75.5	6.4	94.8	82.2	
Stack-Propagation [36]	2.0	94.2	86.9	3.1	95.9	86.5	
SF-ID,SF first [38]	2.6	91.4	80.6	2.2	95.8	86.8	
SF-ID,ID first [38]	2.7	92.2	80.4	2.9	95.8	86.9	
Graph LSTM [45]	2.3	93.8	85.6	3.6	95.8	86.2	
PIN (our model)	0.9	94.5	88.0	2.8	95.9	87.1	
Joint BERT [46]	1.4	97.0	92.8	2.5	96.1	88.2	
Graph LSTM + ELMo [45]	1.7	95.3	89.7	2.8	95.9	87.6	
Stack-Propagation + BERT [36]	1.0	97.0	92.9	2.5	96.1	88.6	
PIN(our model) + BERT	0.8	97.1	93.2	2.2	96.3	88.8	

TABLE 1: Experiment results of our model and the baselines on two benchmark datasets.

Model	SNIPS			ATIS			
Woder	Intent (Err)	Slot (F1)	Overall (Acc)	Intent (Err)	Slot (F1)	Overall (Acc)	
w/o Slot2Intent module	3.1	95.8	86.5	3.1	95.7	86.5	
w/o Intent2Slot module	2.0	94.3	87.0	3.0	95.7	86.7	
w/o Gaussian self-attention	2.3	92.9	84.4	3.1	94.9	85.0	
w/o cooperation mechanism	1.4	94.3	87.4	3.4	95.9	87.0	
Full PIN model	0.9	94.5	88.0	2.8	95.9	87.1	

TABLE 2 Ablation experiments on two benchmarks to investigate the impacts of various components.

Conclusion

- We propose a novel parallel interactive network (PIN) for spoken language understanding
- PIN could support bidirectional and explicit information exchange between ID and SF while reduce the prediction bias.
- The experimental results demonstrate the effectiveness of our approach, which outperforms all comparison methods in terms of most metrics on the two publicly benchmark datasets.

Thank you!

If you have any questions about the paper, you can send an email to zhoupl@pku.edu.cn

