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Background

|ldeal image Real image

¢ Classic dehazing model: I = J = t(x) + A x (1 — t(x))
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Contribution

¢ An end-to-end network for single image dehazing
» Trained without paired Supervision.
> surpassing existing methods.
¢ A novel color-consistency loss
> Integrating DCP into deep learning-based dehazing methods.
¢ A RealHaze Dataset
> Eliminating domain gap between real dataset and synthetic datasets.

> 4,000 real hazy images and 4,000 haze-free outdoor images.
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Related work

¢ Prior-based methods
» Dark channel prior (DCP)
» Color attenuation prior (CAP)
» Non-local dehazing

¢Limitation: Fitting for specific scenarios, but not robust
for other conditions

Fig. 3. Examples for DCP dehazing. First row: input haze image. Second row:
DCP’s result. 6



Related work

¢ Learning-based methods
» DehazeNet
» MSCNN
» AOD-Net
» DCPDN

¢ Limitation: Relying on paired datasets or synthetic
datasets

Fig. 2. Examples and corresponding depth-map from NYU dataset[22] and
Middelbury dataset[23]. Pay attention to the unprecise details and inconsistent
edges. 7
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Network Architecture

Generator Network
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|_oss Functions

¢ 1.Color-Consistency Loss

Dark Channel Prior(DCP):
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| oss Functions

¢ 2. Relativistic discriminator GAN Loss

Lp = —E, [log(D(x,))| = Ex, [log (1= D(x) )

Lg = By, [log(1 - Dxp)] - Ex, [log (D(x7))

¢ 3. Perceptual Loss

1 N
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¢ Total Loss:

Loss = LG + LD +/11Lcolor +/12Lperceptual
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Quantitative Comparison on Synthetic Datasets

¢ Datasets

Training: RealHaze
Evaluating: RESIDE

HSTS
OTS

¢ Evaluation Metrics

PSNR
SSIM

Dataset Metrics

Prior-Based Approaches

Learning-Based Approaches

DCP[3] | NLD[6] | CAP[5] |AODNet[11]|GCANet[8]| OURS
PSNR 14.61 17.74 | 19.88 19.75 23.06 24.39

HSTS
SSIM 0.882 0.860 | 0.885 0.903 0.936 0.939
PSNR 15.31 2038 | 18.19 19.52 22.71 23.79

OTS
SSIM 0.882 0.902 | 0815 0.907 0.931 0.936

«Quantitative comparison on HSTS and OTS datasets (higher is better).
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SSIM 0.890 0.964 0.973 0919 0.947 0.963
(a) Haze Image (b) DCP[3] (c) NLD[6] (d) CAP[5] (e) AODNet[11] (f) GCANet[8] (g) Ours (h) GT

Fig. 6. Qualitative comparison on HSTS dataset. Numbers in red and blue indicate the first and second best results, respectively.
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Qualitative Comparison on Real Images

(a) 'HazeAh;lzylge (b) DCP[3] ("c) L[6] (d) CAP[5] (e) AODNe[l 1]

Fig. 8. Qualitative comparison on real outdoor images.
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Conclusions

=

¢ In this paper, we propose a single image dehazing
network: SIDGAN

v" Trained with real outdoor images instead of paired synthetic
datasets.

v"Integrate perceptual loss and color-consistency loss derived
from DCP .

v Achieve state-of-the-art results on both synthetic datasets and
real datasets .
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