Single Image Dehazing without Paired Supervision

Pan Wei, Xin Wang, Lei Wang, Ji Xiang

1	Introduction
2	Related work
3	Our proposed method
4	Experiments
5	Conclusion

Background

Ideal image

Real image

♦ Classic dehazing model: I = J * t(x) + A * (1 - t(x))

Contribution

◆An end-to-end network for single image dehazing

- > Trained without paired Supervision.
- > surpassing existing methods.

♦ A novel color-consistency loss

➤ Integrating DCP into deep learning-based dehazing methods.

◆A RealHaze Dataset

- > Eliminating domain gap between real dataset and synthetic datasets.
- > 4,000 real hazy images and 4,000 haze-free outdoor images.

1	Introduction
2	Related work
3	Our proposed method
4	Experiments
5	Conclusion

Related work

- Prior-based methods
 - Dark channel prior (DCP)
 - Color attenuation prior (CAP)
 - Non-local dehazing
 - **>**
- Limitation: Fitting for specific scenarios, but not robust for other conditions

Fig. 3. Examples for DCP dehazing. First row: input haze image. Second row: DCP's result.

Related work

- Learning-based methods
 - DehazeNet
 - MSCNN
 - AOD-Net
 - DCPDN
 - **>**
- Limitation: Relying on paired datasets or synthetic datasets

Fig. 2. Examples and corresponding depth-map from NYU dataset[22] and Middelbury dataset[23]. Pay attention to the unprecise details and inconsistent edges.

1	Introduction
2	Related work
3	Our proposed method
4	Experiments
5	Conclusion

Network Architecture

- Generator:
 - >Unet
 - >Skip connections

- Discriminator:
 - > relativistic discriminator

Loss Functions

- 1.Color-Consistency Loss
 - Dark Channel Prior(DCP):

$$J^{dark}(x) = \min_{c \in r, g, b} \left(\min_{y \in \Omega(x)} (J^c(y)) \right) \approx 0$$
$$t^c(x) = \frac{I^c(x) - \min_{c} \min_{y \in \Omega(x)} \left(I^c(y) \right)}{I^c(x)}, c \in \{r, g, b\}$$

Gray-world assumption:

$$\frac{I^{r}(x) = t^{g}(x) = t^{b}(x)}{\frac{I^{r}(x) - \min\limits_{c} \min\limits_{y \in \Omega(x)} \left(I^{c}(y)\right)}{J^{r}(x)} = \frac{I^{g}(x) - \min\limits_{c} \min\limits_{y \in \Omega(x)} \left(I^{c}(y)\right)}{\frac{I^{g}(x)}{I^{g}(x)}} = \frac{I^{b}(x) - \min\limits_{c} \min\limits_{y \in \Omega(x)} \left(I^{c}(y)\right)}{\frac{I^{b}(x)}{I^{b}(x)}}$$

Color-Consistency Loss

$$L_{color} = \frac{1}{WH} \sum_{1.1}^{W,H} \left[1 - CosSimilarity \left(J(x), I(x) - \min_{c} \min_{y \in \Omega(x)} \left(I^{c}(y) \right) \right) \right]$$

Loss Functions

2. Relativistic discriminator GAN Loss

$$L_D = -\mathbb{E}_{x_r} [log(D(x_r))] - \mathbb{E}_{x_f} [log(1 - D(x_f))]$$

$$L_G = -\mathbb{E}_{x_r} [log(1 - D(x_r))] - \mathbb{E}_{x_f} [log(D(x_f))]$$

3. Perceptual Loss

$$L_{perceptual} = \frac{1}{N} \sum_{i=1}^{N} \|\phi_i(I_i) - \phi_i(J_i)\|_2^2$$

◆Total Loss:

$$Loss = L_G + L_D + \lambda_1 L_{color} + \lambda_2 L_{perceptual}$$

1	Introduction
2	Related work
3	Our proposed method
4	Experiments
5	Conclusion

Quantitative Comparison on Synthetic Datasets

♦ Datasets

- **►** Training: RealHaze
- **Evaluating: RESIDE**
 - > HSTS
 - > OTS

Evaluation Metrics

- > PSNR
- > SSIM

Dataset	Metrics	Prior-Based Approaches			Learning-Based Approaches		
		DCP[<u>3</u>]	<i>NLD</i> [<u>6</u>]	<i>CAP</i> [<u>5</u>]	AODNet[<u>11</u>]	GCANet[8]	OURS
HSTS	PSNR	14.61	17.74	19.88	19.75	23.06	24.39
	SSIM	0.882	0.860	0.885	0.903	0.936	0.939
OTS	PSNR	15.31	20.38	18.19	19.52	22.71	23.79
	SSIM	0.882	0.902	0.815	0.907	0.931	0.936

[•]Quantitative comparison on HSTS and OTS datasets (higher is better).

Qualitative Comparison on Synthetic Datasets

Fig. 6. Qualitative comparison on HSTS dataset. Numbers in red and blue indicate the first and second best results, respectively.

Qualitative Comparison on Real Images

Fig. 8. Qualitative comparison on real outdoor images.

1	Introduction
2	Related work
3	Our proposed method
4	Experiments
5	Conclusion

Conclusions

◆In this paper, we propose a single image dehazing network: SIDGAN

- ✓ Trained with real outdoor images instead of paired synthetic datasets.
- ✓ Integrate perceptual loss and color-consistency loss derived from DCP.
- ✓ Achieve state-of-the-art results on both synthetic datasets and real datasets .

References

- [1] Chen, D., et al. Gated context aggregation network for image dehazing and deraining. in 2019 IEEE Winter Conference on Applications of Computer Vision (WACV). 2019. IEEE.
- [2] Bharath Raj, N. and N. Venkateswaran, Single Image Haze Removal using a Generative Adversarial Network. arXiv preprint arXiv:1810.09479, 2018.
- [3] Engin, D., A. Genç, and H. Kemal Ekenel. Cycle-dehaze: Enhanced cyclegan for single image dehazing. in Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Workshops. 2018.
- [4] Li, R., et al. Single image dehazing via conditional generative adversarial network. in Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 2018.
- [5] Ren, W., et al. Gated fusion network for single image dehazing. in Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 2018.
- [6] Ren, W., et al., Deep video dehazing with semantic segmentation. IEEE Transactions on Image Processing, 2018. 28(4): p. 1895-1908.
- [7] Yang, X., Z. Xu, and J. Luo. Towards perceptual image dehazing by physics-based disentanglement and adversarial training. in Thirty-second AAAI conference on artificial intelligence. 2018.
- [8] Zhang, H. and V.M. Patel. Densely connected pyramid dehazing network. in Proceedings of the IEEE conference on computer vision and pattern recognition. 2018.
- [9] Golts, A., D. Freedman, and M. Elad, Unsupervised single image dehazing using dark channel prior loss. IEEE Transactions on Image Processing, 2019.

.....

Thank you!

Thank you!

weipan@iie.ac.cn